Math, asked by vaishnavijaiswal53, 1 month ago

Calculate Amount & CI on ₹30500 for 1½years at 8% per annum
compounded half yearly, with formula.

Answers

Answered by knowledgeserver
1

Step-by-step explanation:

Solution : 2

⟶ Note : When interest is compounded half yearly, then rate of interest would be halfed and time (n) will be doubled that is 2n.

\bf \underline{ \underline{\maltese\:Given} }

✠Given

\sf \implies Principal \: (P) = Rs. \: 30500⟹Principal(P)=Rs.30500

\sf \implies Rate \: of \: interest = 8 \: \% = \dfrac{8}{2} = 4 \: \%⟹Rateofinterest=8%=

2

8

=4%

\sf \implies Time = 1 \: \dfrac{1}{2} \: years= \dfrac{3}{2} \: years \: = \dfrac{3}{2} \times 2 = 3 \: years.⟹Time=1

2

1

years=

2

3

years=

2

3

×2=3years.

\bf \underline{ \underline{\maltese\:To \: find } }

✠Tofind

\sf \implies Amount \: and \: compound \: interest = \: ?⟹Amountandcompoundinterest=?

\bf \underline{ \underline{\maltese\:Solution} }

✠Solution

\underline{\sf { \boxed{ { \sf \: Amount = Principal\: \bigg(\: 1 + \dfrac{Rate}{100} \: \bigg ) ^{Time} }}}}

Amount=Principal(1+

100

Rate

)

Time

\sf \implies {{ \sf \: Amount = 30500\: \bigg(\: 1 + \dfrac{4}{100} \: \bigg ) ^{3} }}⟹Amount=30500(1+

100

4

)

3

\sf \implies {{ \sf 30500\: \bigg(\: 1 + \dfrac{1}{25} \: \bigg ) ^{3} }}⟹30500(1+

25

1

)

3

\sf \implies {{ \sf 30500\: \bigg(\:\dfrac{25 + 1}{25} \: \bigg ) ^{3} }}⟹30500(

25

25+1

)

3

\sf \implies {{ \sf 30500\: \bigg(\: \dfrac{26}{25} \: \bigg ) ^{3} }}⟹30500(

25

26

)

3

\sf \implies \sf \cancel{30500} \times \dfrac{17576}{ \cancel{15625} }⟹

30500

×

15625

17576

\sf \implies \sf \dfrac{244 \times 17576}{125}⟹

125

244×17576

\sf \implies \sf \dfrac{4288544}{125} = 34308.352⟹

125

4288544

=34308.352

\sf \underline{ \boxed{ \sf Therefore, \: amount = Rs. \:34308.352 }}

Therefore,amount=Rs.34308.352

\bf \underline{Now},

Now

,

\sf Compound \: interest = Amount - PrincipalCompoundinterest=Amount−Principal

\sf \implies C.I = 34308.352 - 30500 = Rs. \: 3808.352⟹C.I=34308.352−30500=Rs.3808.352

\sf \underline{ \boxed{ \sf Hence, Compound \: interest = Rs. \: 3808.352 }}

Hence,Compoundinterest=Rs.3808.352

━━━━━━━━━━━━━━━━━━━━━━━━━━

Solution : 3

\bf \underline{ \underline{\maltese\:Given} }

✠Given

\sf \implies Principal \: (P) = Rs. \:18000⟹Principal(P)=Rs.18000

\sf \implies Rate \: of \: interest = 9\: \%⟹Rateofinterest=9%

\sf \implies Time = 3 \: years⟹Time=3years

\bf \underline{ \underline{\maltese\:To \: find } }

✠Tofind

\sf Difference \: between \: compound \: interest \: and \: simple \: Interest = \: ?DifferencebetweencompoundinterestandsimpleInterest=?

\bf \underline{ \underline{\maltese\:Solution } }

✠Solution

\sf Finding \: the \: simple \: interest,Findingthesimpleinterest,

\underline{\boxed{ \sf Simple \: interest = \dfrac{Principal \times Rate \times Time}{100} }}

Simpleinterest=

100

Principal×Rate×Time

\sf \implies Simple \: interest = \cancel{\dfrac{18000 \times 9 \times 3}{100} } = 4860⟹Simpleinterest=

100

18000×9×3

=4860

\sf \underline{Hence, \: simple \: interest = Rs. \: 4860 }

Hence,simpleinterest=Rs.4860

\sf Now, \: finding \: the \: compound \: interest,Now,findingthecompoundinterest,

\underline{\sf { \boxed{ { \sf \: Amount = Principal\: \bigg(\: 1 + \dfrac{Rate}{100} \: \bigg ) ^{Time} }}}}

Amount=Principal(1+

100

Rate

)

Time

\sf \implies {{ \sf \: Amount = 18000\: \bigg(\: 1 + \dfrac{9}{100} \: \bigg ) ^{3} }}⟹Amount=18000(1+

100

9

)

3

\sf \implies {{ \sf \: 18000\: \bigg(\: \dfrac{100 + 9}{100} \: \bigg ) ^{3} }}⟹18000(

100

100+9

)

3

\sf \implies {{ \sf \: 18000\: \bigg(\: \dfrac{109}{100} \: \bigg ) ^{3} }}⟹18000(

100

109

)

3

\sf \implies {{ \sf \: \cancel{18000} \times \dfrac{1295029}{ \cancel{1000000} }}}⟹

18000

×

1000000

1295029

\sf \implies {{ \sf \dfrac{9 \times 1295029}{ 500 }}}⟹

500

9×1295029

\sf \implies {{ \sf \dfrac{11655261}{ 500 }}} = 23310.522⟹

500

11655261

=23310.522

\sf \boxed{ \sf Therefore, \: amount = Rs. \:23310.522 }

Therefore,amount=Rs.23310.522

\sf Compound \: interest = Amount - PrincipalCompoundinterest=Amount−Principal

\sf \implies C.I = 23310.522 - 18000 = Rs. \: 5310.522⟹C.I=23310.522−18000=Rs.5310.522

\sf \boxed{ \sf Hence, Compound \: interest = Rs. \: 5310.522 }

Hence,Compoundinterest=Rs.5310.522

\bf \underline{ Now},

Now

,

\sf Difference = Compound \: interest - Simple \: InterestDifference=Compoundinterest−SimpleInterest

\sf \implies 5310.522 - 4860 = 450.522⟹5310.522−4860=450.522

\sf \underline{ \boxed{ \sf Therefore, \: difference \: between\: C.I \: and \: S.I = Rs. \: 450.522 }} \:

Therefore,differencebetweenC.IandS.I=Rs.450.522

Similar questions