Math, asked by Radhikarana3521, 18 days ago

calculate area of the trapeziums , lengths of whose parallel sides a and b and distance h between them are given below :


(i) a=2.5 , b=1.8 dm ,h= 9 cm
(ii) a = 4 m , b=25 dm,h=60 cm.​

Answers

Answered by ImperialRkSahu
0

Here we will learn how to use the formula to find the area of trapezium.

Area of trapezium ABCD = Area of ∆ ABD + Area of ∆ CBD

= 1/2 × a × h + 1/2 × b × h

= 1/2 × h × (a + b)

= 1/2 (sum of parallel sides) × (perpendicular distance between them)

Area of trapezium

9Save

Worked-out examples on area of trapezium

1. The length of the parallel sides of a trapezium are in the rat: 3 : 2 and the distance between them is 10 cm. If the area of trapezium is 325 cm², find the length of the parallel sides.

Solution:

Let the common ration be x,

Then the two parallel sides are 3x, 2x

Distance between them = 10 cm

Area of trapezium = 325 cm²

Area of trapezium = 1/2 (p₁ + p₂) h

325 = 1/2 (3x + 2x) 10

⇒ 325 = 5x × 5

⇒ 325 = 25x

⇒ x = 325/25

Therefore, 3x = 3 × 13 = 39 and 2x = 2 × 13 = 26

Therefore, the length of parallel sides area are 26 cm and 39 cm.

2. ABCD is a trapezium in which AB ∥ CD, AD ⊥ DC, AB = 20 cm, BC = 13 cm and DC = 25 cm. Find the area of the trapezium.

find the area of trapezium

9Save

Solution:

From B draw BP perpendicular DC

Therefore, AB = DP = 20 cm

So, PC = DC - DP

= (25 - 20) cm

= 5 cm

Now, area of trapezium ABCD = Area of rectangle ABPD + Area of △ BPC

△BPC is right angled at ∠BPC

Therefore, using Pythagoras theorem,

BC² = BP² + PC²

13² = BP² + 5²

⇒ 169 = BP² + 25

⇒ 169 - 25 = BP²

⇒ 144 = BP²

⇒ BP = 12

Now, area of trapezium ABCD = Area of rectangle ABPD + Area of ∆BPC

= AB × BP + 1/2 × PC × BP

= 20 × 12 + 1/2 × 5 × 12

= 240 + 30

= 270 cm²

3. Find the area of a trapezium whose parallel sides are AB = 12 cm, CD = 36 cm and the non-parallel sides are BC = 15 cm and AG = 15 cm.

examples on area of trapezium

9Save

Solution:

In trapezium ABCD, draw CE ∥ DA.

Now CE = 15 cm

Since, DC = 12 cm so, AE = 12 cm

Also, EB = AB - AE = 36 - 12 = 24 cm

Now, in ∆ EBC

S = (15 + 15 + 24)/2

= 54/2

= 27

= √(27 × 12 × 12 × 3)

= √(3 × 3 × 3 × 3 × 2 × 2 × 2 × 2 × 3 × 3)

= 3 × 3 × 3 × 2 × 2

= 108 cm²

Draw CP ⊥ EB.

Area of ∆EBC = 1/2 × EB × CP

108 = 1/2 × 24 × CP

108/12 = CP

⇒ CP = 9 cm Therefore, h = 9 cm

Now, area of triangle = √(s(s - a) (s - b) (s - c))

= √(27 (27 - 15) (27 - 15 ) (27 - 24))

Now, area of trapezium = 1/2(p₁ + p₂) × h

= 1/2 × 48 × 9

= 216 cm²

4. The area of a trapezium is 165 cm² and its height is 10 cm. If one of the parallel sides is double of the other, find the two parallel sides.

Solution:

Let one side of trapezium is x, then other side parallel to it = 2x

Area of trapezium = 165 cm²

Height of trapezium = 10 cm

Now, area of trapezium = 1/2 (p₁ + p₂) × h

⇒ 165 = 1/2(x₁ + 2x) × 10

⇒ 165 = 3x × 5

⇒ 165 = 15x

⇒ x = 165/15

⇒ x = 11

Therefore, 2x = 2 × 11 = 22

Therefore, the two parallel sides are of length 11 cm and 22 cm.

These are the above examples explained step by step to calculate the area of trapezium.

plz make me brainliest answer

Answered by HarkiratSethi
0

Length of bases of trapezium = 12 dm and 20 dm

Length of altitude = 10 dm

We know that, 10 dm = 1 m

∴ Length of bases in m = 1.2 m and 2 m

Similarly, length of altitude in m = 1 m

Area of trapezium = 1/2 (Sum of lengths of parallel sides) × altitude

Area of trapezium = 1/2 (1.2 + 2.0) × 1

Area of trapezium = 1/2 × 3.2 = 1.6

So, Area of trapezium = 1.6m2

(ii) Given that,

Length of bases of trapezium = 28 cm and 3 dm

Length of altitude = 25 cm

We know that, 10 dm = 1 m

∴ Length of bases in m = 0.28 m and 0.3 m

Similarly, length of altitude in m = 0.25 m

Area of trapezium = 1/2 (Sum of lengths of parallel sides) × altitude

Area of trapezium = 1/2 (0.28 + 0.3) × 0.25

Area of trapezium = 1/2 × 0.58× 0.25 = 0.0725

So, Area of trapezium = 0.0725m2

Plz mark as brainliest

Similar questions