Physics, asked by gillagouthami18, 8 months ago

calculate distance trvelled by bus which is moving at speed of 30m/s after traveling 10min bus is moving with 45m/s​

Answers

Answered by Anonymous
39

Answer :

➥ The distance travelled by bus = 25.87 km

Given :

➤ Intial velocity of a bus (u) = 30 m/s

➤ Final velocity of a bus (v) = 45 m/s

➤ Time taken by bus (t) = 10 min

To Find :

➤ Distance travelled by a bus (s) = ?

Solution :

◈ Time taken (t) = 10 min = 10 × 60 = 600 sec

To find distance travelled by a bus first we need to find the acceleration of a bus then after we find the distance travelled by a bus from second equation of motion.

Acceleration of a bus

Acceleration is given by

\tt{:\implies a =  \dfrac{v - u}{t} }

\tt{:\implies a =  \dfrac{45 - 30}{600} }

\tt{:\implies a =  \cancel{\dfrac{15}{600}} }

\bf{:\implies \underline{ \:  \:  \underline{ \green{  \:  \: a = \dfrac{1}{40} \: m/s^2 \:  \:  }} \:  \: }}

Now ,

We find distance travelled by a bus

From second equation of motion

\tt{:\implies s = ut +  \dfrac{1}{2} a {t}^{2} }

\tt{:\implies s = 30 \times 600 \times  \dfrac{1}{2}  \times  \dfrac{1}{40}  \times 600 \times 600}

\tt{:\implies s = 18000 +  \dfrac{1}{2}  \times  \dfrac{1}{40} \times 360000}

\tt{:\implies s = 18000 +  \dfrac{1}{ \cancel { \: 2 \: }}  \times  \cancel{15750}}

\tt{:\implies s = 18000 + 1 \times 7875}

\tt{:\implies s =18000 + 7875}

\tt{:\implies s = 25875 \: m}

Convert into km :

\tt{:\implies s =  \cancel{\dfrac{25875}{1000}} }

\bf{:\implies  \underline{ \:  \:  \underline{ \purple{ \:  \: s = 25.87 \: km \:  \: }} \:  \: }}

Hence, the distance travelled by a bus is 25.87 km.

Some releted equations :

⪼ s = ut + ½ at²

⪼ v = u + at

⪼ v² = u² + 2as

Answered by RISH4BH
108

\large{\underline{\underline{\red{\sf{\hookrightarrow Given :-}}}}}

  • A bus has a Initial velocity of 30m/s .
  • It has a final Velocity of 45m/s.

\large{\underline{\underline{\red{\sf{\hookrightarrow To\:Find: }}}}}

  • The distance travelled by bus in 10minutes.

\large{\underline{\underline{\red{\sf{\hookrightarrow Formula\:Used: }}}}}

We will use second and firsrt equⁿs of motion :

\large\pink{\underline{\boxed{\purple{\tt{\dag \:v\:\:=\:\:u\:\:+\:\:at }}}}}

\large\pink{\underline{\boxed{\purple{\tt{\dag \:s\:\:=\:\:ut\:\:+\:\:\dfrac{1}{2}at^2}}}}}

\large{\underline{\underline{\red{\sf{ \hookrightarrow Answer:}}}}}

Here ,

  • \tt Initial \: velocity\:=\:30m/s
  • \tt Final \: velocity \:=\:45m/s
  • \tt Time\:taken\:=\:10min.

Now , convert time in SI unit , 10min = 10 × 60s = 600s.

\tt Put \: these\:values\:in\:first\:equ^n\:of\:motion

\tt :\implies v =u+at

\tt :\implies 45m/s=30m/s + a\times 600s

\tt :\implies 600a = 45m/s-30m/s

\tt :\implies 600a = 15m/s

\tt :\implies a =\dfrac{\cancel{15}}{\cancel{600}}m/s^2

\underline{\boxed{\red{\tt{\longmapsto a\:\:=\:\:\dfrac{1}{40}ms^{-2}}}}}

\green{\bf \leadsto Hence\:accl^n\:is\:\dfrac{1}{40}ms^{-2}}

_________________________________________

Now , things we have now is ,

  • ❒Acclⁿ = 1/40m/s².
  • ❒ Initial velocity = 30m/s.
  • ❒ time = 600s .

\tt Now \:use \:2nd\: equ^n\: of\: motion ,

\tt:\implies s=ut+\dfrac{1}{2}at^2

\tt:\implies s=30m/s\times600s+\dfrac{1}{2}\times \dfrac{1}{40}ms^{-2}\times(600s)^2

\tt:\implies s = 18000+\dfrac{1}{\cancel{2}}\times \cancel{600s}^{150}\times\cancel{60}\cancel{0}s\times\dfrac{1}{\cancel{4}\cancel{0}}ms^{-2}

\tt:\implies s= 18000 m + 7875m

\tt:\implies s = 25785m

\underline{\boxed{\red{\tt{\longmapsto Distance\:\:=\:\:25.875km}}}}

\orange{\boxed{\green{\bf{\dag\:Hence\:the\: distance\:covered\:is\:25.875\:km.}}}}

Similar questions