Science, asked by assidhu135, 3 months ago

Calculate equivalent resistance in the following between points P and Q​.please ans fast

Attachments:

Answers

Answered by Yuseong
15

Required Answer:

I)

Here, we are given resistances connected in series combination.

❒ The sum of individual resistances is equal to the total resistance in the series combination.

 \underline{\boxed{\sf{ {R}_{s} = {R}_{1} + {R}_{2} + {R}_{3} +. . . . {R}_{n} }}}

  • R₁ → 3 Ω
  • R₂ → 3 Ω
  • R₃ → 3 Ω

→ Rₛ = R₁ + R₂ + R₃

→ Rₛ = 3Ω + 3Ω + 3Ω

Rₛ = 9Ω

Hence, equivalent resistance between P and Q is .

_____________________________

II)

Here, we are given resistances connected in parallel combination.

❒The sum of reciprocals of all the individual resistances is equal to the reciprocal of the total resistance in the parallel combination.

 \underline{\boxed{\sf{ \dfrac{1}{{R}_{P}} = \dfrac{1}{{R}_{1}} + \dfrac{1}{{R}_{2}} + \dfrac{1}{{R}_{3}} +. . . . \dfrac{1}{{R}_{n}} }}}

  • R₁ → 3 Ω
  • R₂ → 3 Ω
  • R₃ → 3 Ω

 \sf {  \dfrac{1}{{R}_{P}}= \dfrac{1}{3} + \dfrac{1}{3} + \dfrac{1}{3}}

 \sf {  \dfrac{1}{{R}_{P}}= \dfrac{1+1+1}{3} } Ω

 \sf {  \dfrac{1}{{R}_{P}}= \dfrac{3}{3} } Ω

 \sf {  \dfrac{1}{{R}_{P}} = 1  } Ω

 \sf {  {R}_{P} = \dfrac{1}{1}  } Ω

 \sf {  {R}_{P} = 1  } Ω

Hence, equivalent resistance between P and Q is .

_______________________________

Answered by ItzShinyQueenn
1

 \sf{(i)  \: We \:  are \:  given  \: a  \: figure \:  of  \: Series \:  Circuit. }

 \sf{Here \:  Resistances  \: are ,}

 \sf• \:  R_{1}  =3  Ω

 \sf•  \: R_{2}  =3Ω

 \sf•  \: R_{3}  =3Ω

 \sf{We \:  know  \: the  \: formula  \: of  \: the  \: Equivalent \:  Resistance \:  for  \: Series  \: Circuit, }

 \bf \red {\bigstar  {\: R_{s}  =  R _{1}  +  R _{2}  +  R_{3}+...+ R_{n}}}

 \sf ⇒ R_{s} =(3 + 3 + 3)Ω

 \sf \therefore R_{s}  =9Ω

 \sf  \pink{ \boxed{Answer : 9 Ω.}}

 \\  \\

 \sf{(ii)  \: We \:  are \:  given  \: a  \: figure \:  of  \: Parallel \:  Circuit. }

\sf{Here \:  Resistances  \: are ,}

 \sf• \:  R_{1}  =3  Ω

 \sf• \:  R_{2}  =3  Ω

 \sf• \:  R_{3}  =3  Ω

 \sf{We \:  know  \: the  \: formula  \: of  \: the  \: Equivalent \:  Resistance \:  for  \: Parallel  \: Circuit, }

 \bf \red {\bigstar  {\:  \frac{1}{R_{p}}  =   \frac{1}{R _{1}}  +   \frac{1}{R_{2}}  +  \frac{1}{R_{3}}+...+\frac{1}{R_{n}} }}

 \sf⇒ \frac{1}{ R_{p} }  =  \frac{1}{3}  +  \frac{1}{3}  +  \frac{1}{3}

 \sf⇒ \frac{1}{ R_{p} }  =  \frac{1 + 1 + 1}{3}

 \sf⇒ \frac{1}{ R_{p} }  =  \frac{3}{3}

 \sf⇒ \frac{1}{ R_{p} }  =  1

 \sf \therefore R_{p}   =  1Ω

 \sf  \pink{ \boxed{Answer : 1 Ω.}}

Similar questions