Chemistry, asked by sultan8950, 1 year ago

Calculate h+ , ch3coo- and c7h5o2- in a solution that is 0.02 m acetic acid and 0.01 m in benzoic acid. Ka(acetic)=1.8

Answers

Answered by rashich1219
5

\bold{[H^{+}]=10^{-3}}

\bold{[CH_{3}COO^{-}]=3.6\times10^{-4}}

\bold{[C_{6}H_{5}COO^{-}]=6.4\times 10^{-4}}

Step by step explanation:

The dissociation reaction of acetic acid is as follows.

\bold{CH_{3}COOH\rightleftharpoons CH_{3}COO^{-}+H^{+}}

\bold{K_{a}=\frac{[CH_{3}COO^{-}][H^{+}]}{[CH_{3}COOH]}}

The dissociation reaction of acetic acid is as follows

\bold{C_{5}H_{5}COOH\rightleftharpoons C_{6}H_{5}COO^{-}+H^{+}}

\bold{K_{a}=\frac{[C_{6}H_{5}COO^{-}][H^{+}]}{[C_{6}H_{5}COOH]}}

\bold{[H^{+}]=\sqrt{K_{1}C_{1}+K_{2}C_{2}}}

=\sqrt{1.8\times 10^{-5}\times 0.02 +6.4\times10^{-5}\alpha 0.01}

=\sqrt{0.36\times 10^{-6}+0.64\times 10^{-6}}

=10^{-3}

Hence, \bold{[H^{+}]=10^{-3}}

Concentration of \bold{CH_{3}COO^{-}}:

1.8\times 10^{-5}=\frac{[CH_{3}COO^{-}]\times 10^{-3}}{0.02}

[CH_{3}COO^{-}]=\frac{3.6\times 10^{-7}}{10^{-3}}=3.6\times10^{-4}

Hence, \bold{[CH_{3}COO^{-}]=3.6\times10^{-4}}

Concentration of \bold{C_{6}H_{5}COO^{-}}

6.4\times 10^{-5}=\frac{[C_{6}H{5}COO^{-}]\times 10^{-3}}{0.01}

[C_{6}H_{5}COO^{-}]=\frac{6.4\times 10^{-7}}{10^{-3}}=6.4\times 10^{-4}

Hence, \bold{[C_{6}H_{5}COO^{-}]=6.4\times 10^{-4}}

Similar questions