Math, asked by goderiddhi, 4 months ago

calculate integration of 5^5^x ×5^x dx​

Answers

Answered by daddatyagi999
14

5 power 5

so

5×5×5×5×5× 5×x

Answered by mathdude500
2

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

1. \:  \boxed{ \blue {\rm \:  \dfrac{d}{dx} \:   {a}^{x} =  {a}^{x} log(a)  }}

2. \:  \boxed{ \blue {\rm \:  \int \: {a}^{x}  dx \:  = \dfrac{ {a}^{x} }{ log(a) }  + c}}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

:\implies \tt \:Let \:  I \:  =    \int \:  {5}^{ {5}^{x} }  {5}^{x}  \: dx

 \red{ \rm \: Put \:   {5}^{x}  = y}

On differentiating both sides w. r. t. x,we get

 :\implies \tt \:  \red{ \rm \:  {5}^{x}  log(5)  = \dfrac{dy}{dx} }

:\implies \tt \:   \red{ \rm \:  {5}^{x} dx = \dfrac{dy}{ log(5) } }

:\implies \tt \:   I \:  =  \int \:  {5}^{y} \dfrac{dy}{ log(5) }

:\implies \tt \:   I = \dfrac{1}{ log(5) }  \int \:  {5}^{y} dy

:\implies \tt \:   I = \dfrac{1}{ log(5) } \times  \dfrac{ {5}^{y} }{ log(5) }  + c

:\implies \tt \:   I = \dfrac{ {5}^{y} }{ {( log(5) )}^{2} }  + c

:\implies \tt \:   I = \dfrac{ {5}^{ {5}^{x} } }{ {( log(5) )}^{2} }  + c

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions