calculate karl pearson's coefficient of skewness from the following data. size(above): 0 10 20 30 40 50 60 70. frequency:150 140 100 80 80 70 30 14
Answers
Given :
Size Frequency
0-10 150
10-20 140
20-30 100
30-40 80
40-50 80
50-60 70
60-70 30
70-80 14
To Find:
Calculate karl pearson's coefficient of skewness
Solution:
Size f cf mid value(x) fx
0-10 150 150 5 750 3750
10-20 140 290 15 2100 31500
20-30 100 390 25 2500 62500
30-40 80 470 35 2800 98000
40-50 80 550 45 3600 162000
50-60 70 620 55 3850 211750
60-70 30 650 65 1950 126750
70-80 14 664 75 1050 78750
SUM 664 18600 775000
Variance ==
Standard deviation =
Mode =
Karl pearson's coefficient of skewness =
Karl pearson's coefficient of skewness =
Hence Karl pearson's coefficient of skewness is 1.0038
Given :
Size Frequency
0-10 150
10-20 140
20-30 100
30-40 80
40-50 80
50-60 70
60-70 30
70-80 14
To Find:
Calculate karl pearson's coefficient of skewness
Solution:
Size f cf mid value(x) fx fx^2fx
2
0-10 150 150 5 750 3750
10-20 140 290 15 2100 31500
20-30 100 390 25 2500 62500
30-40 80 470 35 2800 98000
40-50 80 550 45 3600 162000
50-60 70 620 55 3850 211750
60-70 30 650 65 1950 126750
70-80 14 664 75 1050 78750
SUM 664 18600 775000
\begin{gathered}Mean = \frac{\sum fx}{n}\\Mean = \frac{18600}{664}=28.0120\end{gathered}
Mean=
n
∑fx
Mean=
664
18600
=28.0120
Variance =\frac{\sum fx^2}{n}-(\frac{\sum fx}{n})^2
n
∑fx
2
−(
n
∑fx
)
2
=\frac{775000}{664}-(28.01)^2=382.608
664
775000
−(28.01)
2
=382.608
Standard deviation =\sqrt{variance}=\sqrt{382.608}=19.56
variance
=
382.608
=19.56
Mode =L+\frac{f_1-f_0}{2f_1-f_0-f_2} \times h =0+\frac{150}{2(150)-0-140} \times 10=9.375L+
2f
1
−f
0
−f
2
f
1
−f
0
×h=0+
2(150)−0−140
150
×10=9.375
Karl pearson's coefficient of skewness =\frac{mean- mode}{\text{Standard deviation}}
Standard deviation
mean−mode
Karl pearson's coefficient of skewness =\frac{29.01-9.375}{19.56}=1.0038
19.56
29.01−9.375
=1.0038
Hence Karl pearson's coefficient of skewness is 1.0038