Math, asked by vsv7920, 11 months ago

calculate karl pearson's coefficient of skewness from the following data. size(above): 0 10 20 30 40 50 60 70. frequency:150 140 100 80 80 70 30 14​

Answers

Answered by wifilethbridge
47

Given :

Size                   Frequency

0-10                        150

10-20                      140

20-30                      100

30-40                       80

40-50                       80

50-60                       70

60-70                        30

70-80                        14

To Find:

Calculate karl pearson's coefficient of skewness

Solution:

Size       f                      cf         mid value(x)     fx               fx^2

0-10       150               150              5                    750        3750

10-20     140                290           15                   2100       31500

20-30     100               390            25                 2500      62500

30-40     80               470             35                 2800       98000

40-50    80               550             45                3600        162000

50-60     70               620              55               3850        211750

60-70     30              650              65               1950         126750

70-80     14               664              75               1050          78750

SUM      664                                                     18600        775000

Mean = \frac{\sum fx}{n}\\Mean = \frac{18600}{664}=28.0120

Variance =\frac{\sum fx^2}{n}-(\frac{\sum fx}{n})^2=\frac{775000}{664}-(28.01)^2=382.608

Standard deviation =\sqrt{variance}=\sqrt{382.608}=19.56

Mode =L+\frac{f_1-f_0}{2f_1-f_0-f_2} \times h =0+\frac{150}{2(150)-0-140} \times 10=9.375

Karl pearson's coefficient of skewness =\frac{mean- mode}{\text{Standard deviation}}

Karl pearson's coefficient of skewness =\frac{29.01-9.375}{19.56}=1.0038

Hence Karl pearson's coefficient of skewness is 1.0038

Answered by KnuckleDuster
9

Given :

Size Frequency

0-10 150

10-20 140

20-30 100

30-40 80

40-50 80

50-60 70

60-70 30

70-80 14

To Find:

Calculate karl pearson's coefficient of skewness

Solution:

Size f cf mid value(x) fx fx^2fx

2

0-10 150 150 5 750 3750

10-20 140 290 15 2100 31500

20-30 100 390 25 2500 62500

30-40 80 470 35 2800 98000

40-50 80 550 45 3600 162000

50-60 70 620 55 3850 211750

60-70 30 650 65 1950 126750

70-80 14 664 75 1050 78750

SUM 664 18600 775000

\begin{gathered}Mean = \frac{\sum fx}{n}\\Mean = \frac{18600}{664}=28.0120\end{gathered}

Mean=

n

∑fx

Mean=

664

18600

=28.0120

Variance =\frac{\sum fx^2}{n}-(\frac{\sum fx}{n})^2

n

∑fx

2

−(

n

∑fx

)

2

=\frac{775000}{664}-(28.01)^2=382.608

664

775000

−(28.01)

2

=382.608

Standard deviation =\sqrt{variance}=\sqrt{382.608}=19.56

variance

=

382.608

=19.56

Mode =L+\frac{f_1-f_0}{2f_1-f_0-f_2} \times h =0+\frac{150}{2(150)-0-140} \times 10=9.375L+

2f

1

−f

0

−f

2

f

1

−f

0

×h=0+

2(150)−0−140

150

×10=9.375

Karl pearson's coefficient of skewness =\frac{mean- mode}{\text{Standard deviation}}

Standard deviation

mean−mode

Karl pearson's coefficient of skewness =\frac{29.01-9.375}{19.56}=1.0038

19.56

29.01−9.375

=1.0038

Hence Karl pearson's coefficient of skewness is 1.0038

Similar questions