Chemistry, asked by sanjkhajuria, 5 months ago

Calculate limiting molar conductance for NH4OH, Given molar conductances at infinite dilution for Ba(OH)2, BaCl2 and NH4Cl are 517.6, 240.6 and 129.8 respectively​

Answers

Answered by charvi2010
1

Answer:

Did you mean: Calculate limiting molar conductance for NH4OH, Given molar conductances at infinite dilution for Ba(OH)2, CaCl2 and NH4Cl are 517.6, 240.6 and 129.8 respectively

Answered by ᎪɓhᎥⲊhҽᏦ
28

Answer:

Molar conductance at infinite dilution for

 \rm \: NH_4OH

May be calculated at following process.

 \rm { \Lambda}^{0}_m(NH_4 Cl ) +  \dfrac{1}{2}  {\Lambda}^{0}_m(Ba(OH)_2)  -  \dfrac{1}{2}  {\Lambda}^{0} _m(BaCl_2)

 \rm =   { \lambda}^{0}_{{NH_{4}}^{ + } } + { \lambda}^{0}_{{Cl_{}}^{  -  } } +   \frac{1}{2} { \lambda}^{0}_{{Ba_{2}}^{ + } } + { \lambda}^{0}_{{OH_{}}^{  -  } } - \frac{1}{2} { \lambda}^{0}_{{Ba_{2}}^{ + } }  - { \lambda}^{0}_{{Cl_{}}^{  -  } }

 \rm =   { \lambda}^{0}_{{NH_{4}}^{ + } } +  \cancel{{ \lambda}^{0}_{{Cl_{}}^{  -  } } }+ { \cancel{\frac{1}{2}  { \lambda}^{0}_{{Ba_{2}}^{ + } }}}+ { \lambda}^{0}_{{OH_{}}^{  -  } } \cancel{ - \frac{1}{2} { \lambda}^{0}_{{Ba_{2}}^{ + } } } -  \cancel{{ \lambda}^{0}_{{Cl_{}}^{  -  } }}

 \rm \:  = { \lambda}^{0}_{{NH_{4}}^{ + } }  + { \lambda}^{0}_{{OH_{}}^{  -  } }

 =  \rm{ \Lambda}^{0}NH_4OH

Given

 \rm {\Lambda}^{0}_m(Ba(OH)_2)   = 517.6

 \rm {\Lambda}^{0} _m(BaCl_2) = 240.6

 \rm { \Lambda}^{0}_m(NH_4 Cl )  = 129.8

Calculation:-

 \rm{ \Lambda}^{0}NH_4OH \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \\ = 129.8 +  \dfrac{1}{2}  \times 517.6 -  \dfrac{1}{2}  \times 240.6

  = \rm \: 129.8 + 258.8 - 120.3

 \underline{\boxed{ \rm =268.3 \:  {  \: {Ohm}}^{ - 1}  {cm}^{2}  {mol}^{ - 1}  } } \\

follow the web for avoiding latex errors.

ᎪɓhᎥⲊhҽᏦ ( Brainly.in)

Thank you :)

Similar questions