Social Sciences, asked by rahulahlawat2026, 10 months ago

Calculate mean deviation and it's coefficient of mean deviation about median from the following Data. Size below 10 20 30 40 50 frequency 1and 3 7 8 10

Answers

Answered by UsmanSant
0

The mean deviation about median is 8.9655and its coefficient is 0.598.

Given:

Size (x)             10.      20      30       40       50

Frequency (f)    1          3         7        8         10

To find:

Mean deviation and its coefficient about median

Solution:

First compute the cumulative frequency (cf) of the data

Size (x)             10       20      30       40       50

Frequency (f)    1          3         7        8         10

cf                       1          4         11        19        29

|x-M|                  30       20      10        0         10

f|x-M|                 30       60       70      0        100

Total number of frequencies (N) = 29

To find median we will use the formula,

Median (M) = Size of \frac{N+1}{2}^{thterm

=\frac{29+1}{2}^{th} term

=\frac{30}{2}

=15th term

The 15th term falls under size 40.

Our median is x=40.

∑f|x-M| = 260

The formula for mean deviation MD (M) about median is ∑\frac{f|x-M|}{N}

Substitute the values int he formula,

MD of M= 260/29

=8.9655

Coefficient of MD (M) = MD/M

=8.9655/15

=0.598

Therefore, mean deviation and its coefficient about median are 8.9655 and 0.598.

#SPJ1

Similar questions