Economy, asked by benemmanuvelben30154, 1 month ago

Calculate mean deviation from mean for the following frequency array.​

Attachments:

Answers

Answered by Anonymous
0

Answer:

Mean deviation about mean of the given data is 10.67

Step-by-step explanation:

Given data,

\boxed{\begin{array} {c|c}\bf x &\bf Frequency \\\cline{1-2}10&8\\20&12\\30&20\\40&10\\50&6\\60&4\end{array}}

Mean deviation about mean is given by \sf\dfrac{\sum f|x_i - \overline{x}|}{\sum f}. Therefore, we have to find the mean of the given data first.

Mean is given by,

\sf\overline{x} = \dfrac{\sum x_if_i}{\sum f_i}

From the given data, we will find \sf\sum x_i f_i

\boxed{\begin{array} {c|c|c}\bf X &\bf F & \bf XF\\\cline{1-3}10&8 & 80\\20&12& 240\\30&20&600\\40&10&400\\50&6&300\\60&4&240\\\cline{1-3}\bf Total &  60&1860\end{array}}

Therefore, mean is given by,

\implies \sf\overline{x} = \dfrac{\sum x_if_i}{\sum f_i}

\implies \sf\overline{x} = \dfrac{1860}{60}

\implies \sf\overline{x} = 31

Now we have to find \sf\sum f |x_i - \overline{x}| in order to find mean deviation about mean.

\boxed{\begin{array} {c|c|c}\bf x &\bf f & \bf f|x-\overline{x} |  \\\cline{1-3}10&8 & 168\\20&12& 132\\30&20&20\\40&10&90\\50&6&114\\60&4&116\\\cline{1-3}\bf Total &  60&640\end{array}}

So the mean deviation is given by:

\textbf{\textsf{Mean deviation $= \sf\dfrac{\sum f|x_i - \overline{x}|}{\sum f}$}}

\textbf{\textsf{Mean deviation $= \sf\dfrac{640}{60}$}}

\textbf{\textsf{Mean deviation $=10.67$}}

This is the required answer.

Similar questions