Physics, asked by subisebastian5305, 10 months ago

Calculate percentage error in determination of time period of a pendulum. T = 2pi (sqrt(l))/(g) where, l and g are measured with +-1% and +-2%.

Answers

Answered by ishikavs
1

Maximum percentage error for the time period of pendulum with T = 2\pi  \sqrt{\frac{l}{g} } is

(ΔT/T) = \frac{1}{2} (Δl/l) + \frac{1}{2\\} (Δg/g)

Given (Δl/l) = 1% and (Δg/g) = 2%

So, Maximum percentage error of time period= (ΔT/T) = 0.5 * ( 1% + 2% ) = 1.5%

Answered by HappiestWriter012
4

The Time period of a simple pendulum is given by,

 T = 2\pi \sqrt{ \frac{l}{g} }

Maximum relative error is given by,

 \frac{ \Delta \:T  }{T } =  \frac{1}{2}  (\frac{ \Delta \: l}{l}  +  \frac{ \Delta \: g}{g} )

Maximum percentage error is given by,

 \frac{ \Delta \:T  }{T }\% =  \frac{1}{2}  (\frac{ \Delta \: l}{l} \% +  \frac{ \Delta \: g}{g}\% )

According to the given question

\frac{ \Delta \: l}{l} \%   =  \pm \: 1\%\\  \\   \frac{ \Delta \: g}{g}\% =  \pm \: 2\%

So, Percentage error in the Time period of a simple pendulum is,

 \frac{ \Delta \:T  }{T }\% =  \frac{1}{2}  (\frac{ \Delta \: l}{l} \% +  \frac{ \Delta \: g}{g}\% )  \\  \\  \frac{ \Delta \:T  }{T }\% =  \frac{1}{2} (1 + 2)\% =  \frac{3}{2} \% = 1.5\%

Therefore, The maximum percentage error in the Time period of a simple pendulum is 1.5 %

Similar questions