Math, asked by pradhanbinita841, 2 months ago

Calculate the amount and compound interest of Rs 4600 in 2 years when the rate of interest of successive years are 10 % and 20 % respectively (solve it without using formula)

Solve it fast its urgent plz​

Answers

Answered by StormEyes
10

Solution!!

The concept of compound interest has to be used here.

First year:-

Principal (P) = Rs 4600

Time (T) = 1 year

Rate of interest (R) = 10%

Interest = (P × R × T)/100

Interest = (4600 × 10 × 1)/100

Interest = 46 × 10 × 1

Interest = Rs 460

Amount = Principal + Interest

Amount = Rs 4600 + Rs 460

Amount = Rs 5060

Second year:-

The amount in the first year becomes principal in the second year.

Principal (P) = Rs 5060

Time (T) = 1 year

Rate of interest (R) = 20%

Interest = (P × R × T)/100

Interest = (5060 × 20 × 1)/100

Interest = 506 × 2 × 1

Interest = Rs 1012

Amount = Principal + Interest

Amount = Rs 5060 + Rs 1012

Amount = Rs 6072

Compound Interest (CI) = Final amount - Principal in the first year

CI = Rs 6072 - Rs 4600

CI = Rs 1472

Answered by Anonymous
161

Answer:

\begin{gathered}\huge{\textbf{\textrm{\underline{\underline{\color{green}{Question:-}}}}}}\end{gathered}

● Calculate the amount and compound interest of Rs 4600 in 2 years when the rate of interest of successive years are 10 % and 20 % respectively..

\begin{gathered}\huge{\textbf{\textrm{\underline{\underline{\color{green}{Solution:-}}}}}}\end{gathered}

\begin{gathered} \large{\textsf{\textbf{\underline{\underline{\color{brown}{Given:}}}}}}\end{gathered}

  •  \dashrightarrow\sf{Principle = Rs.4600}
  •  \dashrightarrow\sf{Time = 2 \: years}
  •  \dashrightarrow \sf{Rate \:  {R_1}= 10 \%}
  • \dashrightarrow \sf{Rate \:  {R_2}= 20 \%}

\begin{gathered} \\  \end{gathered}

\begin{gathered} \large{\textsf{\textbf{\underline{\underline{\color{brown}{To Find:}}}}}}\end{gathered}

  • \dashrightarrow \sf{Amount \: and \: compound \: interest }

\begin{gathered} \\  \end{gathered}

\begin{gathered}\large{\textsf{\textbf{\underline{\underline{\color{brown}{Formula Used:}}}}}}\end{gathered}

{\Large{\dag}}{\underline{\boxed{\sf{Amount ={P{\bigg(1 +\dfrac{R_1}{100}\bigg)} {\bigg(1 +\dfrac{R_2}{100}\bigg)}}}}}}

\dag{\underline{\boxed{\sf{Compound \: Interest = Amount- Principle }}}}

\begin{gathered} \\  \end{gathered}

\begin{gathered}\large{\textsf{\textbf{\underline{\underline{\color{brown}{Full Solution:}}}}}}\end{gathered}

\bigstar \: {\underline{\pmb{\frak{\red{Finding \:  the \:  Amount}}}}}

 \quad{: \implies{\sf{Amount = \bf{P{\bigg(1 +\dfrac{R_1}{100}\bigg)} {\bigg(1 +\dfrac{R_2}{100}\bigg)}}}}}

  • Substituting the values

 \quad{: \implies{\sf{Amount = \bf{4600{\bigg(1 +\dfrac{10}{100}\bigg)} {\bigg(1 +\dfrac{20}{100}\bigg)}}}}}

 \quad{: \implies{\sf{Amount = \bf{4600{\bigg(1 \times 100 +\dfrac{10}{100}\bigg)} {\bigg(1 \times 100 +\dfrac{20}{100}\bigg)}}}}}

 \quad{: \implies{\sf{Amount = \bf{4600{\bigg(\dfrac{100 + 10}{100}\bigg)} {\bigg(\dfrac{100 + 20}{100}\bigg)}}}}}

 \quad{: \implies{\sf{Amount = \bf{4600{\bigg(\dfrac{110}{100}\bigg)} {\bigg(\dfrac{120}{100}\bigg)}}}}}

\quad{: \implies{\sf{Amount = \bf{4600 \times {\dfrac{110}{100}} \times  {\dfrac{120}{100}}}}}}

 \quad{: \implies{\sf{Amount = \bf{\dfrac{4600 \times 110 \times 120}{100 \times 100}}}}}

\quad{: \implies{\sf{Amount = \bf{\dfrac{60720000}{10000}}}}}

\quad{: \implies{\sf{Amount=\bf{\cancel{\dfrac{60720000}{10000}}}}}}

\quad{: \implies{\sf{Amount = \bf{Rs.6072}}}}

\begin{gathered} \dag{\boxed{\textsf{\textbf{\underline{\color{red}{Amount = {Rs.6072}}}}}}}\end{gathered}

  • Hence, The Amount is Rs.6072

\begin{gathered} \\  \end{gathered}

\bigstar \: {\underline{\pmb{\frak{\red{Finding \:  the \: Compound \: Interest }}}}}

  \quad{: \implies{\sf{Compound \: Interest =\bf{Amount- Principle }}}}

  • Substituting the values

  \quad{: \implies{\sf{Compound \: Interest = \bf{6072-4600}}}}

  \quad{: \implies{\sf{Compound \: Interest =\bf{Rs.1472}}}}

\begin{gathered} \dag{\boxed{\textsf{\textbf{\underline{\color{red}{Compound  Interest = Rs.1472}}}}}}\end{gathered}

  • Henceforth,The Compound Interest is Rs.1472.

\begin{gathered} \\  \end{gathered}

\begin{gathered}\large{\textsf{\textbf{\underline{\underline{\color{brown}{Answer:}}}}}}\end{gathered}

  • ● The Amount is Rs.6072.
  • ● The Compound Interest is Rs.1472.

\begin{gathered} \\  \end{gathered}

\begin{gathered} \large{\textsf{\textbf{\underline{\underline{\color{brown}{Learn More:}}}}}}\end{gathered}

★ Formula of Principle(P) if Amount and Interest given

\odot{\boxed{\sf{\purple{P=Amount - Interest}}}}

★ Formula of Principle (P) if Interest,time and rate given

\odot{\boxed{\sf{\purple{P = \dfrac{Interest \times 100 }{Time \times Rate}}}}}

★ Formula of Principle (P) if amount,time and rate given

\odot{\boxed{\sf{\purple{P = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}}}}}

★ Formula of Amount if Principle (P) and Interest (I) given

{\odot{\boxed{\sf{\purple{Amount = Principle + Interest }}}}}

Similar questions