Math, asked by shivanisingh68, 4 months ago

calculate the amount and compound interest on ₹90, 000 at the rate of 4% p. a. compound annually for 2 years

Answers

Answered by MagicalBeast
8

Given :

  • Principal = ₹90000
  • Rate = 4% p.a.
  • Time = 2 years
  • Compound interest is applied annually

To find :

  • Amount
  • Compound interest

At end of two years

Forumula used :

\sf \bullet\: A = P\bigg( 1 + \dfrac{R}{100} \bigg)^{T}

\sf \bullet\: A = P + C.I.

Here,

  • T = time
  • A = amount after time T
  • P = principal
  • R = Rate%
  • C.I. = Compound interest after time t

Solution :

First of all we will calculate Amount after two years by using above formula

\sf \bullet\: A = 90000\bigg( 1 + \dfrac{4}{100} \bigg)^{2} \\   \\  \sf \implies\: A = 90000\bigg( \dfrac{(1 \times 100) + (4 \times 1)}{100} \bigg)^{2} \\  \\  \sf \implies\: A = 90000\bigg( \dfrac{100 + 4}{100} \bigg)^{2} \\  \\ \sf \implies\: A = 90000  \times \bigg( \dfrac{104}{100} \bigg)^{2} \\  \\ \sf \implies\: A = 90000 \times \bigg( \dfrac{ {104}^{2} }{100 ^{2} } \bigg) \\  \\  \sf \implies\: A = 90000 \times \: \dfrac{ 10816}{10000 }  \\  \\ \sf \implies\: A =10816 \times \: \dfrac{ 90000}{10000 } \\  \\  \sf \implies\: A =10816 \times \: 9 \\  \\ \sf \implies\: A \:  =  \: 97344

Amount = 97344

_______________________________________________

Amount = Principal + C.I.

➝ C.I. = Amount - principal

➝ C.I. = ₹97344 - ₹90000

➝ C.I. = ₹7344

_______________________________________________

ANSWER :

  • Amount = ₹97,344
  • Compound interest = ₹7,344

Answered by DüllStâr
75

Given:

  • P (Principle) = ₹90000

  • R (rate) = 4%

  • T = 2years

To find:

  • Amount

  • Compound interest

Solution:

For first year

here:

  • P = ₹90000

  • R = 4%

  • T = 1 year

 \\

We know:

 \\

 \bigstar \boxed{ \rm{}Simple \: Interest =  \frac{P \times R \times T}{100} }

 \\

By using this formula we can find value of Simple interest

 \\

 \dashrightarrow\sf{}Simple \: Interest =  \dfrac{P \times R \times T}{100}

 \\

 \dashrightarrow\sf{}Simple \: Interest =  \dfrac{90000 \times 4 \times 1}{100}  \\

 \\

 \dashrightarrow\sf{}Simple \: Interest =  \dfrac{900 \cancel{00 }\times 4 \times 1}{1 \cancel{00} } \\

 \\

 \dashrightarrow\sf{}Simple \: Interest =  \dfrac{900\times 4 \times 1}{1}\\

 \\

 \dashrightarrow\sf{}Simple \: Interest = 900\times 4 \times 1\\

 \\

 \dashrightarrow\sf{}Simple \: Interest = 900\times 4 \\

 \\

 \dashrightarrow\sf{}Simple \: Interest =Rs \:  3600 \\

 \\

To find Amount:

 \\

We know:

 \\

 \bigstar \boxed{ \rm{}Amount = Simple \: Interest + Principle}

 \\

By using this formula we can find value of Amount

 \\

 \dashrightarrow \sf{}Amount = Simple \: Interest + Principle \\

 \\

 \dashrightarrow \sf{}Amount = 3600 + 90000 \\

 \\

 \dashrightarrow \sf{}Amount = Rs93600 \\

 \\

For 2 year:

here:

  • P = ₹93,600

  • R = 4%

  • T = 1 year

 \\

we know:

 \\

 \bigstar \boxed{ \rm{}Simple \: Interest =  \frac{P \times R \times T}{100} }

 \\

 \dashrightarrow\sf{}Simple \: Interest =  \dfrac{P \times R \times T}{100}

 \\

 \dashrightarrow\sf{}Simple \: Interest =  \dfrac{93600 \times 4 \times 1}{100}  \\

 \\

 \dashrightarrow\sf{}Simple \: Interest =  \dfrac{936\cancel{00} \times 4 \times 1}{1\cancel{00}}  \\

 \\

 \dashrightarrow\sf{}Simple \: Interest =  \dfrac{936\times 4 \times 1}{1}  \\

 \\

 \dashrightarrow\sf{}Simple \: Interest = 936\times 4 \times 1 \\

 \\

 \dashrightarrow\sf{}Simple \: Interest = 936\times 4 \\

 \\

 \dashrightarrow\sf{}Simple \: Interest = Rs3744 \\

 \\

To find Amount:

 \\

We know:

 \bigstar \boxed{ \rm{}Amount = Simple \: Interest + Principle}

 \\

 \dashrightarrow \sf{}Amount = Simple \: Interest + Principle \\

 \\

 \dashrightarrow \sf{}Amount = 3744+93600\\

 \\

 \dashrightarrow\underline {\boxed {\sf{}Amount =Rs~ 97344}}\\

 \\

To find Compound interest:

 \\

 \dashrightarrow \sf{}Compound \: interest = Amount - Principle \\

 \\

 \dashrightarrow \sf{}Compound \: interest = 97344 - 90000 \\

 \\

 \dashrightarrow \underline {\boxed {\sf{}Compound \: interest = Rs~7344 }}\\

Similar questions