Math, asked by bhumikashah300p383pu, 1 month ago

Calculate the amount and compound interest on Rs 64000 for 3 years at 15/2 •\• per annum compounded annually.​

Answers

Answered by Yuseong
29

Solution :

Here,

  • Principal (P) = Rs. 64000
  • Time (n) = 3 years
  • Rate (R) =  \sf {\dfrac{15}{2} } %

We have to find,

  • Amount (A)
  • Compound Interest (C.I)

 \underline{\small \sf {\maltese \; \; \; Finding \: Amount \:   : \; \; \;  }}

We know that,

\bigstar \: \boxed{\sf { {A = P \Bigg \lgroup 1 + \dfrac{R}{100} \Bigg \rgroup}^n }} \\

 \sf {A = Rs. \: 64000 \Bigg \lgroup 1 + \dfrac{ \cfrac{15}{2} }{ 100} \Bigg \rgroup^3 }

 \sf {A = {Rs. \: 64000 \Bigg \lgroup 1 +  \dfrac{15}{2} \times \dfrac{1}{100}  \Bigg \rgroup}^3 }

 \sf {A = {Rs. \: 64000 \Bigg \lgroup 1 +  \dfrac{15}{2 \times 100}  \Bigg \rgroup}^3 }

 \sf {A = {Rs. \: 64000 \Bigg \lgroup 1 +  \dfrac{15}{200}  \Bigg \rgroup}^3 }

 \sf {A = {Rs. \: 64000 \Bigg \lgroup \dfrac{200 + 15}{200}  \Bigg \rgroup}^3 }

 \sf {A = {Rs. \: 64000 \Bigg \lgroup \dfrac{215}{200}  \Bigg \rgroup}^3 }

 \sf {A = {Rs. \: 64000 \Bigg \lgroup \dfrac{43}{40}  \Bigg \rgroup}^3 }

 \sf {A = Rs. \: 64000 \times \dfrac{43}{40}  \times \dfrac{43}{40}  \times \dfrac{43}{40} }

 \sf {A = Rs. \: 64000 \times \dfrac{43 \times 43 \times 43 }{40 \times 40 \times 40}}

 \sf {A = Rs. \: \cancel{64000} \times \dfrac{43 \times 43 \times 43 }{\cancel{64000}}}

 \sf {A = Rs. \: 43 \times 43 \times 43 }

\underline{ \boxed{ \bf {Amount = Rs. \: 79507 }  }}

Also, we know that :

\bigstar \: \boxed{\sf {CI = Amount - Principal}} \\

→ C.I = Rs. ( 79507 - 64000 )

\underline{ \boxed{ \bf {CI = Rs. \: 15507 }  }}

Therefore,

\underline{ \boxed{ \bf {Amount = Rs. \: 79507 }  }}

\underline{ \boxed{ \bf {CI = Rs. \: 15507 }  }}

Hence, we got the answer !

Answered by BRAINLYxKIKI
66

Provided Question :

ㅤㅤㅤ

 \tt{\orange{Calculate \: the \: amount\:and\: Compound\:interest }} \\ \tt{\orange{on\:Rs\:64000\:for\:3\:yrs\:at\: \dfrac{15}{2} \% }} \\ \tt{\orange{per\:annum\:compounded\: annually}}

ㅤㅤㅤ

Required Answer :

ㅤㅤㅤ

Given ,

  • \boxed{\sf{Principal\:(P)\:=\: Rs 64000 }}

  • \boxed{\sf{Time\:(T)\:=\: 3 \:years }}

  • \boxed{\sf{Rate\:(R)\:=\: \dfrac{15}{2} \% }}

ㅤㅤㅤ

Answer to find :

  •  \boxed{\orange{\boxed{\sf{\purple{Amount\:(A) }}}}}

  • \boxed{\orange{\boxed{\sf{\purple{ Compound\: Interest }}}}}

ㅤㅤㅤ

Final Answer :

ㅤㅤㅤ

\implies \boxed{\sf{ A \:=\: P \bigg( 1 + \dfrac{r}{100} \bigg)^{T} }}

ㅤㅤㅤ

\implies \sf{ A \:=\: P \: \bigg( 1 + \dfrac{\dfrac{15}{2}}{100} \bigg)^{3} }

ㅤㅤㅤ

\implies \sf{ A \:=\: P \: \bigg( 1 + \dfrac{15}{100 \times 2 } \bigg)^{3} }

ㅤㅤㅤ

\implies \sf{ A \:=\: 64000 \: \bigg( 1 + \dfrac{15}{200} \bigg)^{3} }

ㅤㅤㅤ

\implies \sf{ A \:=\: 64000 \: \bigg( \dfrac{1}{1} + \dfrac{15}{200} \bigg)^{3} }

ㅤㅤㅤ

\implies \sf{ A \:=\: 64000 \: \bigg( \dfrac{200 + 15}{200} \bigg)^{3} }

ㅤㅤㅤ

\implies \sf{ A \:=\: 64000 \: \bigg( \dfrac{\cancel{215}}{\cancel{200}} \bigg)^{3} }

ㅤㅤㅤ

\implies \sf{ A \:=\: 64000 \: \bigg( \dfrac{43}{40} \bigg)^{3} }

ㅤㅤㅤ

\implies \sf{ A \:=\: 64000 \times \dfrac{43}{40} \times \dfrac{43}{40} \times \dfrac{43}{40} }

ㅤㅤㅤ

\implies \sf{ A \:=\: \xcancel{64000} \times \dfrac{43}{\xcancel{40}} \times \dfrac{43}{40} \times \dfrac{43}{40} }

ㅤㅤㅤ

\implies \sf{ A \:=\: \xcancel{1600} \times 43 \times \dfrac{43}{\xcancel{40}} \times \dfrac{43}{40} }

ㅤㅤㅤ

\implies \sf{ A \:=\: \xcancel{40} \times 43 \times 43 \times \dfrac{43}{\xcancel{40}} }

ㅤㅤㅤ

\implies \sf{ A \:=\: 43 \times 43 \times 43 }

ㅤㅤㅤ

\implies \sf{ A \:=\: 79507 }

ㅤㅤㅤ

 \boxed{\boxed{\red{\rm{\therefore A \:=\: Rs \: 79507 }}}}

ㅤㅤㅤ

°•° Compound Interest = A - P

ㅤㅤㅤ

•°• C.I = \boxed{\bf{ 79507 - 64000 }}

ㅤ ㅤ = \boxed{\bf{ rs \: 15507}}

ㅤㅤㅤ

Outcomes :

ㅤㅤㅤ

  • {\fcolorbox{blue}{blue}{\sf{ C.I = Rs 15507 }}}

  • {\fcolorbox{blue}{blue}{\sf{ Amount = Rs 79507 }}}

ㅤㅤㅤ

\boxed{\begin{array}{| c |}\qquad\tt{:}\longrightarrow\large\textsf{ Amount = A }\\\\\\\qquad\tt{:}\longrightarrow\large\textsf{ Time = T }\\\\\\\qquad\tt{:}\longrightarrow\large\textsf{ P = Principal }\\\\\\\qquad\tt{:}\longrightarrow\large\textsf{ S.I = Simple Interest }\\\\\\\qquad\tt{:}\longrightarrow\large\textsf{ C.I = Compound Interest }\end{array}}

ㅤㅤㅤ

ㅤㅤㅤ꧁ ʙʀᴀɪɴʟʏ×ᴋɪᴋɪ ꧂

Similar questions