Math, asked by rakeshkkochar78, 19 days ago

calculate the amount and compound interest on rupees 8000 in two years if the rates of interest for the successive years we 8% and 10% respectively.​

Answers

Answered by Anonymous
26

 \overline{\rule{ 200pt}{2pt}}

Information provided with us:

✰ For 1 St year

➪ Principal ( P )

\implies \sf \:8000\:  Rs

➪Time

\implies \sf \: 1 \: years

➪ Rate of Interest

 \sf\implies \: 8 \: \%

What we have to calculate

➪The required interest and amount

Formula used

\clubsuit \: \rm  \:Simple \: Interest  :

  \longrightarrow\bigstar \:  \:   \sf\boxed{\bold{\orange{ \bigg(\dfrac{P \times R \times  T}{100}\bigg)}}}\: \: \: \bigstar\\

Where

➡ P = Principle

➡ R = Rate of Interest

➡ T = Time

Now

➡ Substitute the given values in above formula and solve

  \longrightarrow\bigstar \:  \:   \sf \boxed{\bold{\green{Interest =  \bigg( \dfrac{8000\times 8\times  1}{100}\bigg)}}}\: \: \: \bigstar\\

  \longrightarrow\bigstar \:  \:   \sf\boxed{\bold{\red{ Interest =  \dfrac{64000}{100} }}}\: \: \: \bigstar\\

  \longrightarrow\bigstar \:  \:   \sf\boxed{\bold{\pink{Interest= 640 \:Rs }}}\: \: \: \bigstar\\

Now

➪ Calculate amount

✰Formula used ༄

\clubsuit \: \rm  \: Amount  :

  \longrightarrow\bigstar \:  \:   \sf\boxed{\bold{\orange{Principle +  Simple \:  Interest}}}\: \: \: \bigstar\\

Now

➡ Substitute the given values in above formula and solve

  \longrightarrow\bigstar \:  \:   \sf \boxed{\bold{\green{Amount = (8000 + 640)}}}\: \: \: \bigstar\\

  \longrightarrow\bigstar \:  \:   \sf\boxed{\bold{\pink{Amount= 8,640 \:Rs }}}\: \: \: \bigstar\\

 \overline{\rule{ 200pt}{2pt}}

Information provided with us:

✰ For 2 nd year

➪ Principal ( P )

\implies \sf \:8640\:  Rs

➪Time

\implies \sf \: 1 \: years

➪ Rate of Interest

 \sf\implies \: 10 \: \%

What we have to calculate

➪The required interest and amount

Formula used

\clubsuit \: \rm  \:Simple \: Interest  :

  \longrightarrow\bigstar \:  \:   \sf\boxed{\bold{\orange{ \bigg(\dfrac{P \times R \times  T}{100}\bigg)}}}\: \: \: \bigstar\\

Where

➡ P = Principle

➡ R = Rate of Interest

➡ T = Time

Now

➡ Substitute the given values in above formula and solve

  \longrightarrow\bigstar \:  \:   \sf \boxed{\bold{\green{Interest =  \bigg( \dfrac{8640\times 10\times  1}{100}\bigg)}}}\: \: \: \bigstar\\

  \longrightarrow\bigstar \:  \:   \sf\boxed{\bold{\red{ Interest =  \dfrac{86400}{100} }}}\: \: \: \bigstar\\

  \longrightarrow\bigstar \:  \:   \sf\boxed{\bold{\pink{Interest= 864 \:Rs }}}\: \: \: \bigstar\\

Now

➪ Calculate amount

Formula used

\clubsuit \: \rm  \: Amount  :

  \longrightarrow\bigstar \:  \:   \sf\boxed{\bold{\orange{Principle +  Simple \:  Interest}}}\: \: \: \bigstar\\

Now

➡ Substitute the given values in above formula and solve

  \longrightarrow\bigstar \:  \:   \sf \boxed{\bold{\green{Amount = (8640 + 864)}}}\: \: \: \bigstar\\

  \longrightarrow\bigstar \:  \:   \sf\boxed{\bold{\pink{Amount= 9,504 \:Rs }}}\: \: \: \bigstar\\

 \overline{\rule{ 200pt}{2pt}}

Now

➪ Calculate Compound interest

Formula used

\clubsuit \: \rm  \: Compound \: interest  :

  \longrightarrow\bigstar \:  \:   \sf\boxed{\bold{\orange{Amount - Principle}}}\: \: \: \bigstar\\

Now

➡ Substitute the given values in above formula and solve

  \longrightarrow\bigstar \:  \:   \sf \boxed{\bold{\green{9504 - 8000}}}\: \: \: \bigstar\\

  \longrightarrow\bigstar \:  \:   \sf\boxed{\bold{\pink{Compound \: interest= 1,504 \:Rs }}}\: \: \: \bigstar\\

Therefore

➡ The required amount is 9,504 Rs and the required compound interest is 1,504 Rs

 \overline{\rule{ 200pt}{2pt}}

Similar questions