Math, asked by adhijp0007, 10 months ago

calculate the amount and th compound intrest on 8000 for 2 years 9 months at 10 % p.a , compounded annualy​

Answers

Answered by 12thpáìn
2

Given

  • Principal(P) = Rs.8000
  • Rate(R) = 10%
  • Time(T) = 2 year's and 9 months

To Find

  • Amount And Compund Interest

Formula

 \boxed{\gray{\sf~~~~~SI= \dfrac{Principal×Rate × Time}{100}}}

 \boxed{\gray{Amount = P\Bigg\{1 + \dfrac{R}{100}\Bigg\}^n}}

Solution

Principal(P) = Rs.8000

Rate(R) = 10%

Time(T) = 2 year's

Amount = ???

 \boxed{\gray{Amount = P\Bigg\{1 + \dfrac{R}{100}\Bigg\}^n}}

Putting the values

{Amount = 8000\Bigg\{1 + \dfrac{10}{100}\Bigg\}^2}

{Amount = 8000\Bigg\{ \dfrac{100 + 10}{100}\Bigg\}^2}

{Amount = 8000\Bigg\{ \dfrac{110}{100}\Bigg\}^2}

{Amount = 8000\Bigg\{ \dfrac{11}{10}\Bigg\}^2}

{Amount = 8000 \times  \dfrac{121}{100}}

{Amount = 80 \times  {121}}

{Amount = 9680}

▬▬▬▬▬▬▬

Simple Interest for 9 months

Principal(P) = Rs.8000

Rate(R) = 10%

Time(T) = 9 months = 9/12 Year's

Simple interest = ???

{\sf~~~~~SI= \dfrac{Principal×Rate × Time}{100}}

{\sf~~~~~SI= \dfrac{8000 \times 10 \times 9 }{100 \times 4}}

{\sf~~~~~SI= \dfrac{8000 \times 90 }{400 }}

{\sf~~~~~SI= 20 \times 90 }

{\sf~~~~~SI= 1800 }

Total Amount = 9680+1800

Total Amount = 11780

Compound interest = Amount - Principal

Compound interest = 11780-8000

Compound interest = 3780

  •  \\  \\  \\  \boxed{  \bf\therefore Amount = 11780   \:  \:  \:  \:  \:    \bf Compound \:  \:  Interest = 3780}\\\\

\begin{gathered}\begin{gathered}\begin{gathered} \dag \: \underline{\bf{More \: Useful \: Formula}}\\ {\boxed{\begin{array}{cc}\dashrightarrow {\sf{Amount = Principle + Interest}} \\ \\ \dashrightarrow \sf{ P=Amount - Interest }\\ \\ \dashrightarrow \sf{ S.I = \dfrac{P \times R \times T}{100}} \\ \\ \dashrightarrow \sf{P = \dfrac{Interest \times 100 }{Time \times Rate}} \\ \\ \dashrightarrow \sf{P = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}} \\ \end{array}}}\end{gathered}\end{gathered}\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answered by Anonymous
1

Given

  • GivenPrincipal(P) = Rs.8000
  • GivenPrincipal(P) = Rs.8000Rate(R) = 10%
  • GivenPrincipal(P) = Rs.8000Rate(R) = 10%Time(T) = 2 year's and 9 months

GivenPrincipal(P) = Rs.8000Rate(R) = 10%Time(T) = 2 year's and 9 monthsTo Find

  • GivenPrincipal(P) = Rs.8000Rate(R) = 10%Time(T) = 2 year's and 9 monthsTo FindAmount And Compund Interest

GivenPrincipal(P) = Rs.8000Rate(R) = 10%Time(T) = 2 year's and 9 monthsTo FindAmount And Compund InterestFormula

GivenPrincipal(P) = Rs.8000Rate(R) = 10%Time(T) = 2 year's and 9 monthsTo FindAmount And Compund InterestFormula \boxed{\gray{\sf~~~~~SI= \dfrac{Principal×Rate × Time}{100}}}

GivenPrincipal(P) = Rs.8000Rate(R) = 10%Time(T) = 2 year's and 9 monthsTo FindAmount And Compund InterestFormula \boxed{\gray{\sf~~~~~SI= \dfrac{Principal×Rate × Time}{100}}} \boxed{\gray{Amount = P\Bigg\{1 + \dfrac{R}{100}\Bigg\}^n}}

Solution

Principal(P) = Rs.8000

Rate(R) = 10%

Time(T) = 2 year's

Amount = ???

[tex] \boxed{\gray{Amount = P\Bigg\{1 + \dfrac{R}{100}\Bigg\}^n}}[/tex]

tex] \boxed{\gray{Amount = P\Bigg\{1 + \dfrac{R}{100}\Bigg\}^n}}[/tex]Putting the values

tex] \boxed{\gray{Amount = P\Bigg\{1 + \dfrac{R}{100}\Bigg\}^n}}[/tex]Putting the values{Amount = 8000\Bigg\{1 + \dfrac{10}{100}\Bigg\}^2}

tex] \boxed{\gray{Amount = P\Bigg\{1 + \dfrac{R}{100}\Bigg\}^n}}[/tex]Putting the values{Amount = 8000\Bigg\{1 + \dfrac{10}{100}\Bigg\}^2}{Amount = 8000\Bigg\{ \dfrac{100 + 10}{100}\</strong>Bigg\}^2}

{Amount = 8000\Bigg\{ \dfrac{110}{100}\Bigg\}^2}

{Amount = 8000\Bigg\{ \dfrac{11}{10}\Bigg\}^2}

{Amount = 8000\Bigg\{ \dfrac{11}{10}\Bigg\}^2}{Amount = 8000 \times  \dfrac{121}{100}}

{Amount = 8000\Bigg\{ \dfrac{11}{10}\Bigg\}^2}{Amount = 8000 \times  \dfrac{121}{100}} {Amount = 80 \times  {121}}

{Amount = 8000\Bigg\{ \dfrac{11}{10}\Bigg\}^2}{Amount = 8000 \times  \dfrac{121}{100}} {Amount = 80 \times  {121}} {Amount = 9680}

{Amount = 8000\Bigg\{ \dfrac{11}{10}\Bigg\}^2}{Amount = 8000 \times  \dfrac{121}{100}} {Amount = 80 \times  {121}} {Amount = 9680} ______________

{Amount = 8000\Bigg\{ \dfrac{11}{10}\Bigg\}^2}{Amount = 8000 \times  \dfrac{121}{100}} {Amount = 80 \times  {121}} {Amount = 9680} ______________Simple Interest for 9 months

Principal(P) = Rs.8000

Rate(R) = 10%

Time(T) = 9 months = 9/12 Year's

Simple interest = ???

{\sf~~~~~SI= \dfrac{Principal×Rate × Time}{<strong>100}}

100}}[/tex]{\sf~~~~~SI= \dfrac{8000 \times 10 \times 9 }{100 \times 4}}

100}}[/tex]{\sf~~~~~SI= \dfrac{8000 \times 10 \times 9 }{100 \times 4}}{\sf~~~~~SI= \dfrac{8000 \times 90 }{400 }}

100}}[/tex]{\sf~~~~~SI= \dfrac{8000 \times 10 \times 9 }{100 \times 4}}{\sf~~~~~SI= \dfrac{8000 \times 90 }{400 }}{\sf~~~~~SI= 20 \times 90 }

100}}[/tex]{\sf~~~~~SI= \dfrac{8000 \times 10 \times 9 }{100 \times 4}}{\sf~~~~~SI= \dfrac{8000 \times 90 }{400 }}{\sf~~~~~SI= 20 \times 90 }{\sf~~~~~SI= 1800 }

100}}[/tex]{\sf~~~~~SI= \dfrac{8000 \times 10 \times 9 }{100 \times 4}}{\sf~~~~~SI= \dfrac{8000 \times 90 }{400 }}{\sf~~~~~SI= 20 \times 90 }{\sf~~~~~SI= 1800 }Total Amount = 9680+1800

100}}[/tex]{\sf~~~~~SI= \dfrac{8000 \times 10 \times 9 }{100 \times 4}}{\sf~~~~~SI= \dfrac{8000 \times 90 }{400 }}{\sf~~~~~SI= 20 \times 90 }{\sf~~~~~SI= 1800 }Total Amount = 9680+1800Total Amount = 11780

Compound interest = Amount - Principal

Compound interest = 11780-8000

Compound interest = 11780-8000Compound interest = 3780

Compound interest = 11780-8000Compound interest = 3780 \\  \\  \\  \boxed{  \bf\therefore Amount = 11780 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:</strong>  \:  \:  \:  \:  \:  \\  \bf Compound \:  \:  Interest = 3780}

Similar questions