Math, asked by saurabh4507, 2 months ago

Calculate the amount and the compound interest on 12,000 in 3 years when the rates
of interest for successive years are 8%, 10% and 15% respectively.
please explain on paper​

Answers

Answered by Anonymous
43

Answer:

{\large{\pmb{\sf{\underline{Given...}}}}}

  • \red\bigstar Principle = 12000
  • \red\bigstar Time = 3 years
  • \red\bigstar Rates of Interest = 8%, 10%, 15%

\begin{gathered}\end{gathered}

{\large{\pmb{\sf{\underline{To \: Find ...}}}}}

  • \red\bigstar Amount
  • \red\bigstar Compound Interest

\begin{gathered}\end{gathered}

{\large{\pmb{\sf{\underline{Using \:  Formulae...}}}}}

 \begin{gathered}\bigstar{\underline{\boxed{\sf {\purple{A =P\bigg\lgroup{1 +\dfrac{R_1}{100} }\bigg\rgroup\bigg\lgroup{1  + \dfrac{R_2}{100}}\bigg\rgroup\bigg\lgroup{1 + {\dfrac{R_3}{100}}}\bigg\rgroup}}}}} \end{gathered}

Where

  • \green\star A = Amount
  • \green\star P = Principle
  • \green\star \sf{R_1} = Rate Interest of first year
  • \green\star \sf{R_2} = Rate Interest of second year
  • \green\star \sf{R_1} = Rate Interest of third year

\bigstar{\underline{\boxed{\sf{\purple{C.I = \big\lgroup{A  -  P \big\rgroup}}}}}}

Where

  • \green\star C.I = Compound Interest
  • \green\star A = Amount
  • \green\star P = Principle

\begin{gathered}\end{gathered}

{\large{\pmb{\sf{\underline{Solution...}}}}}

 \pink{\dag \: {\underline{\frak{Finding  \: the \:  Amount : }}}}

 \quad{:  \implies{\sf{A = \bf{P\bigg\lgroup{1 +\dfrac{R_1}{100} }\bigg\rgroup\bigg\lgroup{1  + \dfrac{R_2}{100}}\bigg\rgroup\bigg\lgroup{1 + {\dfrac{R_3}{100}}}\bigg\rgroup}}}}

  • Substituting the values

 \quad{:  \implies{\sf{A = \bf{12000\bigg\lgroup{1 +\dfrac{8}{100} }\bigg\rgroup\bigg\lgroup{1  + \dfrac{10}{100}}\bigg\rgroup\bigg\lgroup{1 + {\dfrac{15}{100}}}\bigg\rgroup}}}}

 \quad{:  \implies{\sf{A = \bf{12000\bigg\lgroup{\dfrac{(1 \times 100) + 8}{100}}\bigg\rgroup\bigg\lgroup{\dfrac{(1 \times 100) + 10}{100}}\bigg\rgroup\bigg\lgroup{\dfrac{(1 \times 100) + 15}{100}}\bigg\rgroup}}}}

 \quad{:  \implies{\sf{A = \bf{12000\bigg\lgroup{\dfrac{100+ 8}{100}}\bigg\rgroup\bigg\lgroup{\dfrac{100 + 10}{100}}\bigg\rgroup\bigg\lgroup{\dfrac{100 + 15}{100}}\bigg\rgroup}}}}

 \quad{:  \implies{\sf{A = \bf{12000\bigg\lgroup{\dfrac{108}{100}}\bigg\rgroup\bigg\lgroup{\dfrac{110}{100}}\bigg\rgroup\bigg\lgroup{\dfrac{115}{100}}\bigg\rgroup}}}}

 \quad{:  \implies{\sf{A = \bf{12000\ \times {\dfrac{108}{100}} \times {\dfrac{110}{100}} \times {\dfrac{115}{100}}}}}}

\quad{:  \implies{\sf{A = \bf{12\cancel{000}\ \times {\dfrac{1366200}{1000\cancel{000}}}}}}}

\quad{:  \implies{\sf{A = \bf{\dfrac{12 \times 1366200}{1000}}}}}

\quad{:  \implies{\sf{A = \bf{\dfrac{16394400}{1000}}}}}

\quad{:\implies{\sf{A = \bf{\cancel{\dfrac{16394400}{1000}}}}}}

\quad{:  \implies{\sf{\purple{A = \bf{16394.4}}}}}

{\bigstar{\underline{\boxed{\sf{Amount = Rs.16394.40}}}}}

\begin{gathered}\end{gathered}

 \pink{\dag \: {\underline{\frak{Finding  \: Compound  \: Interest : }}}}

 \quad{ :  \implies{\sf{C.I = \bf\big\lgroup{A  -  P \big\rgroup}}}}

  • Substituting the values

\quad{ :  \implies{\sf{C.I = \bf\big\lgroup{ 16394.40 - 12000\big\rgroup}}}}

\quad{ :  \implies{\sf{\purple{C.I = \bf{Rs.4394.40}}}}}

{\bigstar{\underline{\boxed{\sf{Compound \: Interest = Rs.4394.40}}}}}

\begin{gathered}\end{gathered}

 \pink{\dag \: {\underline{\frak{Hence : }}}}

  • \red\bigstar The Amount is Rs.16394.40..
  • \red\bigstar The Compound Interest is Rs.4384.40..

\begin{gathered}\end{gathered}

{\large{\pmb{\sf{\underline{Learn \: More...}}}}}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \dag \: \underline{\bf{More \: Useful \: Formula}}\\ {\boxed{\begin{array}{cc}\dashrightarrow {\sf{Amount = Principle + Interest}} \\ \\ \dashrightarrow \sf{ P=Amount - Interest }\\ \\ \dashrightarrow \sf{ S.I = \dfrac{P \times R \times T}{100}} \\ \\ \dashrightarrow \sf{P = \dfrac{Interest \times 100 }{Time \times Rate}} \\ \\ \dashrightarrow \sf{P = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}} \\ \end{array}}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}


mddilshad11ab: Perfect explaination ✔️
Similar questions