calculate the amount and the compound interest on rupees 32000 for 6 months at 5% per annum compounded quarterly
Answers
AnswEr :
- Principal,[P] = Rs.32000
- Rate,[R] = 5% per annum
- Time,[n] = 6 months.
- The amount.
- The compound Interest.
Formula use : (For compounded quarterly).
A/q
Now;
∴ The amount is Rs.32805 .
We know that Compound Interest :
Thus,
The Compound Interest (C.I.) = Rs.805.
Answer:
AnswEr :
\bf{\red{\underline{\underline{\mathcal{GIVEN\::}}}}}
GIVEN:
Principal,[P] = Rs.32000
Rate,[R] = 5% per annum
Time,[n] = 6 months.
\bf{\red{\underline{\underline{\mathcal{TO\:FIND\::}}}}}
TOFIND:
The amount.
The compound Interest.
\bf{\red{\underline{\underline{\mathcal{EXPLANATION\::}}}}}
EXPLANATION:
Formula use : (For compounded quarterly).
A/q
Now;
\begin{lgathered}\mapsto\sf{A=32000\bigg(1+\dfrac{5}{4\times 100} \bigg)x^{\cancel{4}\times \dfrac{1}{\cancel{2}} }} \\\\\\\mapsto\sf{A=32000\bigg(1+\cancel{\dfrac{5}{400}} \bigg)^{2} }\\\\\\\mapsto\sf{A=32000\bigg(1+\dfrac{1}{80} \bigg)^{2} }\\\\\\\mapsto\sf{A=32000\bigg(\dfrac{80+1}{80} \bigg)^{2} }\\\\\\\mapsto\sf{A=320\cancel{00}\times \dfrac{81}{8\cancel{0}} \times \dfrac{81}{8\cancel{0}} }\\\\\\\mapsto\sf{A=\cancel{320}\times \dfrac{81\times 81}{\cancel{64}} }\\\\\\\mapsto\sf{A=Rs.(5* 81*81)}\end{lgathered}
↦A=32000(1+
4×100
5
)x
4
×
2
1
↦A=32000(1+
400
5
)
2
↦A=32000(1+
80
1
)
2
↦A=32000(
80
80+1
)
2
↦A=320
00
×
8
0
81
×
8
0
81
↦A=
320
×
64
81×81
↦A=Rs.(5∗81∗81)
\mapsto\sf{\red{A=Rs.32805}}↦A=Rs.32805
∴ The amount is Rs.32805 .
We know that Compound Interest :
\begin{lgathered}\leadsto\sf{C.I.=A\:-\:P}\\\\\leadsto\sf{C.I.=Rs.32805-Rs.32000}\\\\\leadsto\sf{\red{C.I.=Rs.805}}\end{lgathered}
⇝C.I.=A−P
⇝C.I.=Rs.32805−Rs.32000
⇝C.I.=Rs.805
Thus,
The Compound Interest (C.I.) = Rs.805.