Math, asked by shivamjadoun17031997, 3 months ago

calculate the amount of 31250 rupees at the end of 5/2 years. compounded annually at 8% per annum​

Answers

Answered by george0096
10

Answer:

  • The amount is ₹ 37908.

Step-by-step explanation:

Given that:

\sf\circ\;\;Principal = Rs.\;31250

\sf \circ\;\;Rate = 8\% \;per\; annum

\sf{\circ \;\;Time = \dfrac{5}{2}\;years=2\dfrac{1}{2}\;years}

As we know that:

When we have time in fraction

\sf{i.e. \longrightarrow\;a\dfrac{b}{c}\;years.\;\bf{Then,}}

\sf{Amount=P\bigg(1+\dfrac{R}{100}\bigg)^a+\left(1+\dfrac{\dfrac{b}{c}\times R}{100}\right)}

As,

\sf{Time\;is\;2\dfrac{1}{2}\;years}

Therefore,

Substituting the values,

\sf{Amount=31250\bigg(1+\dfrac{8}{100}\bigg)^2+\left(1+\dfrac{\dfrac{1}{2}\times 8}{100}\right)}

Solving the brackets,

\sf{\longmapsto31250\left(\dfrac{100+8}{100}\right)^2\times\left(1+\dfrac{4}{100}\right)}

\sf{\longmapsto31250\left(\dfrac{108}{100}\right)^2\times\left(\dfrac{100+4}{100}\right)}

\sf{\longmapsto31250\left(\dfrac{108}{100}\right)^2\times\left(\dfrac{104}{100}\right)}

Opening the brackets,

\sf{\longmapsto31250\times\dfrac{108}{100}\times\dfrac{108}{100}\times\dfrac{104}{100}}

Reducing the numbers,

\sf{\longmapsto31250\times\dfrac{27}{25}\times\dfrac{27}{25}\times\dfrac{26}{25}}

Dividing the numbers,

\sf{\longmapsto31250\times1.08\times1.08\times1.04}

Multiplying the numbers,

\sf{\longmapsto37908}

Hence, amount is ₹ 37908.

Similar questions