Math, asked by chhillarnitesh7, 4 months ago

Calculate the amount on Rs. 28,000 at 12% p.a. compounded annually for 3

years​

Answers

Answered by thebrainlykapil
49

Given :-

  • Principal = Rs,28000
  • Rate = 12%
  • Time = 3 years

 \\

To Find :-

  • Amount

 \\  \\

Formula :-

{:} \longrightarrow \sf  \underline{\boxed{\bf{Amount \:  =  \:  Principal \:  \times \bigg(1 \:  +  \: \dfrac{Rate}{100} \bigg)^{Time}    }}} \\

 \\  \\

Solution :-

 \\

\longmapsto \sf{\sf{Amount \:  =  \:  Principal \:  \times \bigg(1 \:  +  \: \dfrac{Rate}{100} \bigg)^{Time}  }} \\\\    \longmapsto \sf{\sf{Amount \:  =  \:  28000 \:  \times \bigg(1 \:  +  \: \dfrac{12}{100} \bigg)^{3}  }} \\\\   \longmapsto \sf{\sf{Amount \:  =  \:  28000 \:  \times \bigg(  \dfrac{112}{100} \bigg)^{3}  }} \\\\   \longmapsto \sf{\sf{Amount \:  =  \:  28 \cancel{000} \:  \times \:  \dfrac{112}{1 \cancel{00}} \:  \times  \:   \dfrac{112}{1 \cancel{0}0} \:  \times  \:  \dfrac{112}{100} \:  }} \\\\    \longmapsto \sf{\sf{Amount \:  =  \:  28  \:  \times \:  \dfrac{112}{1} \:  \times  \:   \dfrac{112}{10} \:  \times  \:  \dfrac{112}{100} \:  }} \\\\  \longmapsto \sf{\sf{Amount \:  =  \:  28  \:  \times \:  \dfrac{112 \:  \times  \: 112 \:  \times  \: 112}{1000}  }} \\\\   \longmapsto \sf{\sf{Amount \:  =  \:   \dfrac{12544\:  \times  \: 3136}{1000}  }} \\\\  \longmapsto \sf{\sf{Amount \:  =  \:   \dfrac{ 39,337,984 }{1000}  }} \\\\  \longmapsto \sf{\bf{Amount \:  =  \:    39,337.984 }} \\\\

________________

 \\

So, Amount is Rs,39,337.984

________________

Answered by Anonymous
42

Answer:

Given :-

  • A sum of Rs 28000 at 12% p.a at compounded annually for 3 years.

To Find :-

  • What is the amount.

Formula Used :-

{\red{\boxed{\large{\bold{A =\: P\bigg(1 + \dfrac{r}{100}\bigg)^{n}}}}}}

where,

  • A = Amount
  • P = Principal
  • r = Rate of Interest
  • n = Time

Solution :-

Given :

  • Principal (P) = Rs 28000
  • Rate of Interest (r) = 12%
  • Time (n) = 3 years

According to the question by using the formula we get,

\sf A =\: 28000\bigg(1 + \dfrac{12}{100}\bigg)^{3}

\sf A =\: 28000\bigg(\dfrac{100 + 12}{100}\bigg)^{3}

\sf A =\: 28000\bigg(\dfrac{112}{100}\bigg)^{3}

\sf A =\: 28\cancel{00}\cancel{0} \times \dfrac{112}{1\cancel{00}} \times \dfrac{112}{10\cancel{0}} \times \dfrac{112}{100}

\sf A =\: \dfrac{28 \times 112 \times 112 \times 112}{1000}

\sf A =\: \dfrac{39337984}{1000}

\sf\bold{\purple{A =\: Rs\: 39337.984}}

\therefore The amount is Rs 39337.984 .

Similar questions