calculate the amount sinx + sin 3x+.....+sin(2n +1)
Answers
Answered by
0
Answer:
sin²(n+1)x/cosx
Step-by-step explanation:
Hi,
Let the sum S = sinx + sin 3x+.....+sin(2n +1),
Now multiplying by sinx on both sides we get,
sinx.S = sinx(sinx + sin 3x+.....+sin(2n +1)x)
= sin²x + sinx.sin3x + ........+sinx.sin(2n+1)x
= 1/2[ 1 - cos2x + cos2x - cos4x +.........+ cos(2n)x - cos(2n+2)x]
=1/2[1 - cos2(n+1)x]
=1/2*2sin²(n+1)x
= sin²(n+1)x
⇒cosx.S = sin²(n+1)x
⇒S = sin²(n+1)x/cosx
Hope, it helped !
Similar questions