Physics, asked by aswinv074, 10 days ago

calculate the amplitude, angular frequency, time period, frequency & intial phase for the simple harmonic oscillation given below
a.y = 0.3sin(40πt)
b.y = 2 \cos(πt)
c.y = 3sin(2πt - 1.5)

Answers

Answered by harisreeps
0

Answer:

The position of a particle at any time 't' in simple harmonic motion is given by the formula

x(t)=A\sin \left(\omega t+\phi \right)

Explanation:

  • The position of a particle at any time 't' in simple harmonic motion is given by the formula

        x(t)=A\sin \left(\omega t+\phi \right)

        where

       A- the amplitude of the oscillation

       ω- angular frequency

       Φ- the initial phase

  • The time period of oscillation is

        T=\frac{2\pi }{w}

  • The frequency of oscillation

      f=1/T

for oscillations given in the question,

1)   y=0.3\sin \left(40t\right)

Compared with the above equation,

the amplitude of the oscillation A=0.3

the angular frequency ω=40

the initial phase Ф=0

Time period T=2\pi /40=0.157s

the frequency f=1/0.157=6.36Hz

2) y=2\cos \left(t\right)

the amplitude A=2

the angular frequency ω=1

the initial phase Ф=0

the time period T=2\pi /1=6.28s

the frequency f=0.159Hz

3)y=3sin(2t-1.5)

the amplitude A=3

the angular frequency ω=2

the initial phase Ф=1.5

time period T=2\pi /2=3.14s

frequency f=1/3.14=0.31Hz

Attachments:
Similar questions