Math, asked by dakshyanijhadol92, 20 days ago

Calculate the angles of a triangle if they are in the ratio 4:5:6

Answers

Answered by niteshrajputs995
0
  • As per the data given in the question, we have to find the value of the expression.

            Given data:- Ratio of the triangle 4:5:6.

            To find:- Calculate angles of the triangle.

            Solution:-

  • We know that triangle has three angles and three sides.
  • In a triangle, the sum of angles of a triangle is 180°.

         \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}

         It is given that

        \angle \mathrm{A}: \angle \mathrm{B}: \angle \mathrm{C}=4: 5: 6\\\text { Consider } \angle \mathrm{A}=4 \mathrm{x}, \angle \mathrm{B}=5 \mathrm{x} \text { and } \angle \mathrm{C}=6 \mathrm{x}

        Substituting the values

        4 \mathrm{x}+5 \mathrm{x}+6 \mathrm{x}=180^{\circ}

        By further calculation

         \begin{array}{l}15 \mathrm{x}=180^{\circ} \\\mathrm{x}= \frac{180^{\circ}}{15}  =12\end{array}

        \begin{array}{l}\angle \mathrm{A}=4 \mathrm{x}=4 \times 12^{\circ}=48^{\circ} \\\angle \mathrm{B}=5 \mathrm{x}=5 \times 12^{\circ}=60^{\circ} \\\angle \mathrm{C}=6 \mathrm{x}=6 \times 12^{\circ}=72^{\circ}\end{array}

         Hence we will get the angles 48^{\circ} ,60^{\circ} ,72^{\circ}.

Similar questions