Math, asked by ABHI69871, 4 months ago

calculate the are of triangle whose sides are 13cm,5cm,and 12cm.calculate the altitude using longest side as base .leave your answer as fraction

Answers

Answered by MoodyCloud
47

Answer:

  • Altitude of triangle is 60/13 cm.

Step-by-step explanation:

We will use Heron's formula here, beacuse we do not have height of triangle.

Heron's formula is '

Area of triangle = s(s - a)(s - b)(s - c)

Where,

  • s is semi-perimeter of triangle.
  • a, b and c are sides of triangle.

Semi - Perimeter of triangle = Perimeter/2

 \longrightarrow Semi-perimeter = 13 + 5 + 12/2

 \longrightarrow Semi-perimeter = 30/2

 \longrightarrow Semi-perimeter = 15

Semi-perimeter of triangle is 15 cm.

We will find area :

 \longrightarrow Area = √15(15 - 13)(15 - 5)(15 - 12)

 \longrightarrow Area = √15 × 2 × 10 × 3

 \longrightarrow Area = √5 × 3 × 2 × 2 × 5 × 3

 \longrightarrow Area = 2 × 3 × 5

 \longrightarrow Area = 30

Area of triangle is 30 cm².

Now,

Let, Height/altitude of triangle be h.

13 cm is longest side of triangle. So, If we take base 13 cm and height/altitude of triangle be h then area of triangle will same.

So,

Area of triangle = ½ × base × height

 \longrightarrow 30 = ½ × 13 × h

 \longrightarrow 30 × 2 = 13 × h

 \longrightarrow 60 = 13 × h

 \longrightarrow 60/13 = h

Altitude of triangle is 60/13 cm.

Attachments:
Answered by IndianGamer2005
15

Answer:

Area = 30cm^{2} | Altitude = 4cm

Step-by-step explanation:

Semi-perimeter of triangle= s = (13+5+12)/2

                                                 = 30/2

                                                 = 15cm

Area = \sqrt{(s)(s-13)(s-5)(s-12)} (Heron's Formula)

        = \sqrt{(15)(15-13)(15-5)(15-12)}

        = \sqrt{(15)(2)(10)(3)}

        = \sqrt{(5)(5)(3)(3)(2)(2)}

        = 5×3×2

        = 30cm^{2}

Altitude of triangle according to longest side = area/longest side*1/2

                                                                           = 30/7.5

                                                                           = 4cm

Similar questions