Math, asked by skyeslater1603, 6 months ago

Calculate the area of a sector with radius 7m and sector angle 90 degrees.
take pie as 22 over 7

Answers

Answered by SarcasticL0ve
11

GivEn:

  • Radius of Circle = 7 cm
  • Sector angle = 90° \\ \\

To find:

  • Area of sector \\ \\

SoluTion:

Reference of image is shown in diagram \\ \\

\setlength{\unitlength}{1.2mm}\begin{picture}(50,55)\thicklines\qbezier(25.000,10.000)(33.284,10.000)(39.142,15.858)\qbezier(39.142,15.858)(45.000,21.716)(45.000,30.000)\qbezier(45.000,30.000)(45.000,38.284)(39.142,44.142)\qbezier(39.142,44.142)(33.284,50.000)(25.000,50.000)\qbezier(25.000,50.000)(16.716,50.000)(10.858,44.142)\qbezier(10.858,44.142)( 5.000,38.284)( 5.000,30.000)\qbezier( 5.000,30.000)( 5.000,21.716)(10.858,15.858)\qbezier(10.858,15.858)(16.716,10.000)(25.000,10.000)\put(25,30){\line(5,0){20}}\put(25,30){\circle*{1}}\put(30,32){\sf\large{7 cm}}\put(25,30){\line(0, - 5){20}}\put(16,20){\sf\large{7 cm}}\put(28,30){\line(0, - 5){3}}\put(25,27){\line(5,0){3}}\put(30,25){\sf\large{$ \sf 90^\circ$}}\end{picture}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

We know that, \\ \\

\star\;{\boxed{\sf{\purple{Area_{\;(sector)} = \dfrac{ \theta}{360^\circ} \times \pi r^2}}}}\\ \\

Now, Putting given values in formula, \\ \\

:\implies\sf \cancel{ \dfrac{90^\circ}{360^\circ}} \times \dfrac{22}{ \cancel{7}} \times \cancel{7} \times 7\\ \\

:\implies\sf 4 \times 22 \times 7\\ \\

:\implies{\boxed{\frak{\pink{616\;cm^2}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Hence,\;Area\;of\;sector\;is\; \bf{616\;cm^2}.}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\quad\boxed{\underline{\underline{\purple{\bigstar \: \bf\:Formula\:Related\:to\:Circle\:\bigstar}}}}\\ \\

\;\;\bullet\;\;\sf Area_{\;(cricle)} = \pi r^2\\ \\

\;\;\bullet\;\;\sf Area_{\;(Perimeter)} = 2 \pi r\\ \\

\;\;\bullet\;\;\sf Area_{\;(semi - cricle)} = \dfrac{ \pi r^2}{2}\\ \\

\;\;\bullet\;\;\sf Peri - meter_{\;(semi - cricle)} = \pi r + 2r\\ \\

\;\;\bullet\;\;\sf Area_{\;(quadrant)} = \dfrac{ \pi r^2}{4}\\ \\

\;\;\bullet\;\;\sf Area_{\;(sector)} = \dfrac{ \theta}{360^\circ} \times \pi r^2\\ \\

\;\;\bullet\;\;\sf Peri - meter_{\;(sector)} = \dfrac{ \theta}{360^\circ} \times 2 \pi r + 2r\\ \\

\;\;\bullet\;\;\sf Area_{\;(segment)} = \dfrac{ \theta}{360^\circ} \pi r^2 - \dfrac{1}{2} r^2 sin \theta\\ \\

\;\;\bullet\;\;\sf Peri - meter_{\;(segment)} = \dfrac{\pi r \theta}{180^\circ} + 2r \dfrac{ \theta}{2}

Similar questions