Math, asked by safa874, 4 months ago

Calculate the area of a triangle whose base is 4.9 cm and altitude is 2.2 cm

Answers

Answered by jonahreji
0

Answer:

5.39

Step-by-step explanation:

Answered by BrainlyRish
6

Given : The base of Triangle is 4.9 cm and the altitude is 2.2 cm .

Need To Find : Area of Triangle.

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Formula for Finding area of Triangle is Given by :

\dag\frak{\underline { As, \:We\:know\:that \::}}\\

\qquad \qquad \underline {\boxed {\sf{ \star Area_{(Triangle)} = \dfrac{1}{2} \times b \times h\:sq.units}}}\\\\

Where ,

  • b is the Base of the Triangle in cm and h isnthe height or Altitude of Triangle in cm .

\underline {\frak{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

:\implies \sf{ Area_{(Triangle)} = \dfrac {1}{2} \times 4.9 \times 2.2}\\\\:\implies \sf{Area_{(Triangle)} = \dfrac{1}{\cancel {2}} \times 4.9 \times \cancel {2.2} }\\\\ :\implies \sf{ Area_{(Triangle)} = 1.1 \times 4.9 }\\\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  Area_{(Triangle)}  = 5.39\: cm^{2}}}}}\:\bf{\bigstar}\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {  Hence ,\: Area \:of\: \triangle \:is\:\bf{5.39\: cm^{2}}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\

  • \begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions