Physics, asked by randycunningham7933, 11 months ago

Calculate the area of a triangle whose vertices are given by (3, 1, 2), (1, 1, 2) and (4, 2, 1).

Answers

Answered by SushmitaAhluwalia
0

The area of a triangle whose vertices are given by (3, 1, 2), (1, 1, 2) and

(4, 2, 1) is \sqrt{2}  square units

  • Given vertices are

          A(3, 1, 2) B(1, 1, 2) C(4, 2, 1)

  • Area of triangle ABC is given by

                 \frac{1}{2}|ABXAC|

  • AB = (1, 1, 2) - (3, 1, 2) = (-2, 0, 0)
  • AC = (4, 2, 1) - (3, 1, 2) = (1, 1, -1)

           ABXAC=\left|\begin{array}{ccc}i&j&k\\-2&0&0\\1&1&-1\end{array}\right|

                          = i(0-0)-j(2-0)+k(-2-0)

                          = -2j-2k

  • Ar(ΔABC) = \frac{1}{2}|ABXAC|

                         = \frac{1}{2}\sqrt{(-2)^{2}+(-2)^{2}}

                          = \frac{1}{2}\sqrt{4+4}

                          = \frac{1}{2}2\sqrt{2}

                          = \sqrt{2} square units

Similar questions