Physics, asked by pallavishendge8172, 7 months ago

Calculate the area of cross section of a wire if is length is 1.0m it's resistance is 2.3ohm and the resistivityof the material of the wire is 1.84×10–6ohm m

Answers

Answered by Cosmique
36

Given :

  • Length of wire, L = 1.0 m
  • Resistance of wire, R =2.3 Ω
  • Resistivity of wire, ρ = 1.84 × 10⁻⁶  Ω m

To find :

  • Area of cross section of wire, A = ?

Formula required :

  • Relation between Resistance (R), resistivity (ρ), Length (L) and area of cross section (A) of conductor

\red{\bigstar}\boxed{\sf{R=\dfrac{\rho\;\; L}{A}}}

Solution :

Using formula      

\implies\sf{R=\dfrac{\rho\;\;L}{A}}

\implies\sf{2.3=\dfrac{1.84 \times 10^{-6}\times 1.0}{A}}

\implies\sf{A=\dfrac{1.84 \times 10^{-6}}{2.3}}

\implies\underline{\underline{\red{\sf{A=0.8\times10^{-6}\;\;m^2}}}}

Therefore,

  • Area of cross section of conductor is 0.8 × 10⁻⁶ m².

Answered by Anonymous
31

Given:

  • Resistance (R) = 2.3 Ω

  • Length of the wire (l) = 1 m

  • Resistivity of wire (ρ) = 1.84 × \sf 10^-6\: Ω

To Find :

Cross section area of wire = ?

Solution :

\huge\bigstar \:  \:  \boxed{\tt R = \rho \dfrac{l}{A}}\:  \:  \bigstar \\  \\

:  \implies\sf 23 \:  =  \: 1.84 \:  \times \:   {10}^{ - 6} \:   \times \:  \dfrac{1}{A} \\  \\

: \implies\sf A  \:  =  \:  \dfrac{1.84 \:  \times \:   {10}^{ - 6}}{23} \\  \\

: \implies\underline{ \boxed{\sf A  \:  =  \:  0.8 \:  \times  \:  {10}^{ - 6} \:m^{2}}} \: \: \bigstar \\ \\

\underline{\sf Therefore,\:the \:  area \:  of \:  cross \:  section \: of \: wire \:  is \: \bf{ 0.8 \times 10^{-6}\:m^2}}.

Similar questions