Math, asked by safalbabbar1, 6 months ago

calculate the area of cross section of a wire it's length is 1.0m it's resistance is23ohm and the restivity of the material of a wire is 1.84×10^-6 ohm m

Answers

Answered by Cosmique
112

Given :

  • Length of wire, L = 1.0 m
  • Resistance of wire, R = 23 Ω
  • Resistivity of wire, ρ = 1.84 × 10⁻⁶ Ω m

To find :

  • Area of cross section of wire, A = ?

Formula required :

  • Relation between Resistance (R), Resistivity (ρ), Length (L) and area of cross section (A)

       R = ρ L / A

[ Where R is in ohms, ρ is in ohm-metres, L in metres and Area in square metres ]

Solution :

Using relation

→ R = ρ L / A

→ 23 = ( 1.84 × 10⁻⁶) ( 1 ) / A

→ 23 = 1.84 × 10⁻⁶ / A

→ A = 1.84 × 10⁻⁶ / 23

A = 0.08 × 10⁻⁶  m²

Therefore,

  • Area of cross section of wire would be 0.08 × 10⁻⁶  m².
Answered by Anonymous
94

\tt {\pink{Given}}\begin{cases} \sf{\green{Resistivity=1.84\times 10^{-6}}}\\ \sf{\blue{Length=1 \: m}}\\ \sf{\orange{Resisiatnce=23 \:  \Omega}}\\ \sf{\red{Cross  \: section  \: area= \: ?}}\end{cases}

______________________

Solution :

:\implies \sf Resistance = Resistivity \times \dfrac{Length}{Cross \:  section \:  area} \\  \\  \\

:\implies \sf 23 \:  \Omega= 1.84 \times  {10}^{ - 6}  \times  \Bigg \lgroup\dfrac{1}{Cross  \: section  \: area} \Bigg \rgroup \\  \\  \\

:\implies \sf 23 \:  \Omega=  \dfrac{1.84 \times  {10}^{ - 6}}{Cross  \: section  \: area} \\  \\  \\

:\implies \sf Cross  \: section  \: area =  \dfrac{1.84 \times  {10}^{ - 6} }{23}  \\  \\  \\

:\implies \sf Cross  \: section  \: area =  0.08 \times  {10}^{ - 6}   \\  \\  \\

:\implies  \underline{ \boxed{\textsf{ \textbf {Cross   section  area =  8 $\times$  {10}$^{ - 8}$  {m}$^{2}$ }}}}  \\  \\  \\

\therefore\underline{\textsf{The area of Cross section of wire is  \textbf{8$\times${10}$^{-8}$ m$^{2}$}}}. \\

Similar questions