Math, asked by zainabfatima1, 1 year ago

Calculate the area of quadrilateral ABCD in which AB=32 cm,AD=24cm, angle A=90° and BC=CD=52cm

Answers

Answered by 137AMU
77
Hope the answer is correct
Attachments:
Answered by suchindraraut17
27

Area of Quadrilateral ABCD = \bold {1344\ cm^2}

Step-by-step explanation:

In a quadrilateral ABC ,∠A = 90°,

AB=32 cm,AD=24 cm,BC=CD = 52 cm

Construction:

Join BD.

In ΔABD,∠A= 90°

As we know Pythagorean triplets (24,32,40)

So,BD = 40 cm

Also,Area\ of\ \Delta ABD = \frac{1}{2}\times Base\times Height

                               =\frac{1}{2}\times 32\times 24

                               = 384\ cm^2

Now,For ΔBCD,As it is an isoceles triangle

Length of perpendicular drawn from point C on BD of ΔBCD

Perpendicular = \sqrt{(52)^2-\frac{(40)^2}{4}

                        =\sqrt{2704-400}

                       = \sqrt{2304}

                       = 48 cm

Now,\bold {Area\ of\ \Delta BCD = \frac{1}{2}\times Base\times Perpendicular}

                                 =\frac{1}{2}\times 40\times 48

                                 = 960\ cm^2

Area of quadrilateral ABCD = 384\ cm^2+960\ cm^2

                                              =1344\ cm^2

Hence,Area of Quadrilateral ABCD = \bold {1344\ cm^2}

           

Similar questions