Math, asked by Anonymous, 11 months ago

Calculate the area of quadrilateral ABCD in which AB=32cm , AD=24cm angle A = 90° and BC=CD =52cm

Answers

Answered by sachinarora2001
8

Refer attachment please ...

Hope its helpful to u ☺️✌️☺️

Attachments:

Aarushi665: awesome answer
Anonymous: Thanks for the answer
Answered by Aarushi665
10

Find the area of quadrilateral by adding the area's of ∆ABD , ∆BCD

 \underline{  \rm{Area  \: of  \:  \: \triangle ABD}}

\rm{Area  \: of  \:  \: \triangle ABD =  \frac{1}{2} \times AB \times  AD}

\rm{ =  \frac{1}{2} \times 32 \times  24}

 \rm \fbox{Area  \: of  \:  \: \triangle ABD = 384 {cm}^{2} }

Now find the length of BD by Pythagoras Theorem

 \implies\rm{BD}^{2} = {AB }^{2}+ {AD}^{2}

 \implies\rm{BD}^{2} = {32 }^{2}+ {24}^{2}

\implies \rm{BD}^{2} = 1024+ 576

 \implies\rm{BD}^{2} = 1600

\implies\rm{BD}=  \sqrt{ 1600}

 \fbox{\rm{BD}=  40cm}

\underline{  \rm{Area  \: of  \:  \: isosceles \: \triangle   BCD}}

\rm{Area  \: of  \:  \: isosceles \: \triangle   BCD =  \frac{1}{4} b \sqrt{4 {a}^{2} -  {b}^{2}  } }

a = equal side , b = base

 \implies \rm{  \frac{1}{4}  \times 40 \sqrt{4 ({52})^{2} -  {40}^{2}  } }

 \implies \rm{  10 \sqrt{4 ({2704})-  {1600}  } }

 \implies \rm{ 10 \sqrt{10816 -  1600 } }

 \implies \rm{ 10 \sqrt{9216} }

 \implies \rm{ 10  \times 96 }

 \fbox{\rm{Area  \: of  \:  \: isosceles \: \triangle   BCD = 960 {cm}^{2} }}

\rm Area  \: of \:  quadrilateral = Area \:  of  \: \triangle  \: ABD + Area  \: of  \: \triangle BCD</p><p>

 \implies \rm \: 384 + 960

 \fbox{ \therefore\rm Area  \: of \:  quadrilateral =1344 {cm}^{2} }

Attachments:

Anonymous: Thank you
Aarushi665: welcome sis
Similar questions