Calculate the area of the triangle whose sides are 18 cm, 24 cm and
30 cm in length. Also, find the length of the altitude corresponding to
the smallest side.
Answers
a=18cm
b=24cm
c=30cm
semi perimeter(s)=a+b+c/2
=18+24+30/2
=72/2
=36
area=√s(s-a)(s-b)(s-c)
=√36(36-18)(36-24)(36-30)
=√36×18×12×6
=√46656
=216cm²
smaller side=18cm
therefore, base=18cm
area=1/2bh
216 =1/2×18×h
216×2/18=h
height=24cm
let
a=18 cm
b=24 cm
c=30 cm
we know that semiperimetre = a+b+c/2
now
substitute the values of a,b and c
18+24+30/2
36
now by herons formula
a(triangle)=√s(s-a)(s-b)(s-c)
substitute the values
√36(36-18)(36-24)(36-30)
√36*18*12*6
√6*6*6*3*6*2*6
√6*6*6*6*6*3*2
√6*6*6*6*6*6
6*6*6
216
therefore area of triangle = 216 cm^2
now length of altitude =
area of triangle= 1/2 * base * height
216= 1/2* 24* altitude
216=12*altitude
altitude=216/12
altitude=18 cm
PLZ MARK AS