Math, asked by karansingh97718, 11 months ago

Calculate the area of the triangle whose sides are 18 cm, 24 cm and
30 cm in length. Also, find the length of the altitude corresponding to
the smallest side.​

Answers

Answered by amanchakrawarty
1

a=18cm

b=24cm

c=30cm

semi perimeter(s)=a+b+c/2

=18+24+30/2

=72/2

=36

area=√s(s-a)(s-b)(s-c)

=√36(36-18)(36-24)(36-30)

=√36×18×12×6

=√46656

=216cm²

smaller side=18cm

therefore, base=18cm

area=1/2bh

216 =1/2×18×h

216×2/18=h

height=24cm

Answered by bhagirath0
3

\textbf{STEP BY STEP}

let

a=18 cm

b=24 cm

c=30 cm

we know that semiperimetre = a+b+c/2

now

substitute the values of a,b and c

18+24+30/2

36

now by herons formula

a(triangle)=√s(s-a)(s-b)(s-c)

substitute the values

√36(36-18)(36-24)(36-30)

√36*18*12*6

√6*6*6*3*6*2*6

√6*6*6*6*6*3*2

√6*6*6*6*6*6

6*6*6

216

therefore area of triangle = 216 cm^2

now length of altitude =

area of triangle= 1/2 * base * height

216= 1/2* 24* altitude

216=12*altitude

altitude=216/12

altitude=18 cm

PLZ MARK AS

\huge{BRAINLIEST}

Similar questions