Calculate the area of triangle having length of its sides are 25 cm, 20 cm and 35 cm.
Answers
Answer:
The area of triangle is 244.9 cm².
Step-by-step-explanation:
We have given that,
The lengths of sides of triangle are
- s₁ = 25 cm
- s₂ = 20 cm
- s₃ = 35 cm
We have to find the area of the triangle.
Now, we know that,
Semiperimeter of triangle = ( Sum of sides ) / 2
⇒ s = ( s₁ + s₂ + s₃ ) / 2
⇒ s = ( 25 + 20 + 35 ) / 2
⇒ s = ( 25 + 5 + 15 + 35 ) / 2
⇒ s = ( 30 + 50 ) / 2
⇒ s = 80 ÷ 2
⇒ s = 40 cm
∴ Semiperimeter of triangle = 40 cm
Now, by Heron's formula,
Area of triangle = √[ s ( s - s₁ ) ( s - s₂ ) ( s - s₃ ) ]
⇒ A = √[ 40 ( 40 - 25 ) ( 40 - 20 ) ( 40 - 35 ) ]
⇒ A = √( 40 * 15 * 20 * 5 )
⇒ A = √( 4 * 10 * 5 * 3 * 4 * 5 * 5 )
⇒ A = √( 4 * 5 * 2 * 5 * 3 * 4 * 5 * 5 )
⇒ A = √( 4 * 4 * 5 * 5 * 5 * 5 * 3 * 2 )
⇒ A = 4 * 5 * 5 * √( 3 * 2 )
⇒ A = 4 * 25 * √6
⇒ A = 100 √6
⇒ A = 100 * 2.449
⇒ A = 244.9 cm²
∴ The area of triangle is 244.9 cm².
Given :
Sides of triangle are
a = 25cm
b = 20cm
c = 35cm
To Find :
Area of the triangle
Solution :
semi perimeter (s) = (a + b + c)/2
= (25 + 20 + 35)/2
= (80)/2
s = 40cm
then by using Heron's Formula :-
Area = √s(s - a) (s - b) (s - c)
⇒ √40 (40 - 25) (40 - 20) (40 - 35)
⇒ √40 * 15 * 20 * 5
⇒ √60000
⇒ 244.94 cm²
⇒ 245cm² (approx.)
∴ Area of the Triangle is 245cm²