Math, asked by gautam15679, 1 year ago

calculate the area of triangle whose sides are 18 cm 24 cm and 30 cm in length also find the length of altitude corresponding to the smallest side

Answers

Answered by TooFree
233

Find the semi-perimeter:

p = (18 + 24 + 30) ÷ 2 = 36 cm


Find the area of the triangle:

area = √p(p-a)(p-b)(p-c)

area = √36(36 - 18)(36 - 24)(26 - 30)

area = √46656

area = 216 cm²


Find the length of the altitude corresponding to the smallest side:

area = 1/2 (base) (height)

216 = 1/2 (18) (height)

216 = 9 height

height = 216 ÷ 9 = 24 cm


Answer: The area is 216 cm² and the corresponding height is 24 cm

Answered by Anonymous
88

\color{red}{ \bold{ \huge{ \boxed{thanks \: for \: asking \: this \: question}}}}


\bold{ \huge{ \boxed{good \: morning}}}


\color{indigo}{ \bold{ \huge{ \boxed{required \: answer}}}}



 \bold{ \underline{area \: of \: semi - triangle}}

 \bold{ \underline{ \boxed{18  + 24 + 30 =  \frac{72}{2}  = 36}}}
\bold{ \underline{ \boxed{now}}}

  \bold{ \underline{ \boxed{ \sqrt{y(y - a)(y - b)(y - c)}}}}


\bold{ \underline{ \boxed{ \sqrt{36(36 - 18)(36 - 24)(36 - 30)}}}}
\bold{ \underline{ \boxed{ \sqrt{36(18)(24)(30)}}}}

\bold{ \underline{ \boxed{ \sqrt{46656}}}}

\bold{ \underline{ \boxed{ =) 216}}}


\bold{ \underline{ \boxed{again}}}


\bold{ \underline{ \boxed{area \: of \: triangle =  \frac{1}{2}  \times base \times height}}}


\bold{ \underline{ \boxed{ 216 = \frac{1}{2}  \times 18 \times h}}} \\


\bold{ \underline{ \boxed{216 \times 2 = 18h}}}

\bold{ \underline{ \boxed{h =  \frac{216 \times 2}{18}}}}

\bold{ \underline{ \boxed{h =  \frac{432}{18}  = )24}}}


 \color{red}{\bold{ \underline{ \boxed{therefore}}}}

\bold{ \underline{ \boxed{height = 24}}}


Similar questions