calculate the cell potential for following cell : Al | Al³+ (0.25M) || Zn²+(0.15M) | Zn
E°cell : Al³+ = -1.66v , E°cell : Zn²+ = -0.76v
Answers
Given :
Reaction :
and
To Find
Calculate the potential of the given cell reaction
Theory :
•Nernst Equation :
or
• E° cell
Solution :
We have , Reaction
We know that
At Anode :
At Cathode :
Now ,
Multiply Equation (1) by 2 and Equation (2) by 3
Then ,
Over-all reaction :
Thus , n= 6
Then ,
Given
By Nernst Equation :
Therefore,the potential of the given cell is 0.887 V
Answer:
Given :
Reaction :
\sf\:Al\:|Al^{+3}(0.25M)\:||\:Zn^{+2}(0.15M)|ZnAl∣Al
+3
(0.25M)∣∣Zn
+2
(0.15M)∣Zn
and
\sf\:\:E\degree\:Zn^{+2}|Zn=-0.76VE°Zn
+2
∣Zn=−0.76V
\sf\:\:E\degree\:Al^{+3}|Al=-1.66VE°Al
+3
∣Al=−1.66V
To Find
Calculate the potential of the given cell reaction
Theory :
•Nernst Equation :
\sf\:E_{cell}=E\:\degree_{cell}+\dfrac{-2.303RT}{nF}\log\dfrac{[Prduct]}{[Reactant]}E
cell
=E°
cell
+
nF
−2.303RT
log
[Reactant]
[Prduct]
or \sf\:E_{cell}=E\degree_{cell}-\dfrac{0.059}{n}\log\:QE
cell
=E°
cell
−
n
0.059
logQ
• E° cell
\sf\:E\degree_{cell}=E\degree_{cathode}-E\degree_{anode}E°
cell
=E°
cathode
−E°
anode
Solution :
We have , Reaction
\sf\:Al\:|Al^{+3}(0.25M)\:||\:Zn^{+2}(0.15M)|ZnAl∣Al
+3
(0.25M)∣∣Zn
+2
(0.15M)∣Zn
We know that
\bf\:E\degree_{cell}=E\degree_{cathode}-E\degree_{anode}E°
cell
=E°
cathode
−E°
anode
\sf\:E\degree_{cell}=-0.76-(-1.66)E°
cell
=−0.76−(−1.66)
\sf\:E\degree_{cell}=(-0.76+1.66)VE°
cell
=(−0.76+1.66)V
\sf\:E\degree_{cell}=0.90VE°
cell
=0.90V
At Anode :
\sf\:Al\:\longrightarrow\:Al^{+3}+3e^{-1}...(1)Al⟶Al
+3
+3e
−1
...(1)
At Cathode :
\sf\:Zn^{+2}+2e^{-1}\longrightarrow\:Zn....(2)Zn
+2
+2e
−1
⟶Zn....(2)
Now ,
Multiply Equation (1) by 2 and Equation (2) by 3
Then ,
Over-all reaction :
\sf\:2Al+3Zn^{+2}\longrightarrow\:3Zn+2Al^{+3}2Al+3Zn
+2
⟶3Zn+2Al
+3
Thus , n= 6
Then ,
\sf\:Q=\dfrac{[Prduct]}{[Reactant]}Q=
[Reactant]
[Prduct]
\sf\:Q=\dfrac{[Al^{+3}]^2}{[Zn^{+2}]^3}Q=
[Zn
+2
]
3
[Al
+3
]
2
Given \sf\:[Zn^{+2}]=0.15M\:and\:[Al^{+3}]=0.25M[Zn
+2
]=0.15Mand[Al
+3
]=0.25M
\sf\implies\:Q=\dfrac{(0.25)^2}{(0.15)^3}⟹Q=
(0.15)
3
(0.25)
2
\sf\implies\:Q=\dfrac{25\times25\times10^6}{15\times15\times100\times10^4}⟹Q=
15×15×100×10
4
25×25×10
6
\sf\implies\:Q=\dfrac{500}{27}⟹Q=
27
500
By Nernst Equation :
\sf\:E_{cell}=E\degree_{cell}-\dfrac{0.059}{n}\log\:QE
cell
=E°
cell
−
n
0.059
logQ
\sf\implies\:E_{cell}=0.90-\dfrac{0.059}{6}\log\:(\dfrac{500}{27})⟹E
cell
=0.90−
6
0.059
log(
27
500
)
\sf\implies\:E_{cell}=0.90-0.01[\log(\dfrac{500}{27})]⟹E
cell
=0.90−0.01[log(
27
500
)]
\sf\implies\:E_{cell}=0.90-0.01[\log500-\log27]⟹E
cell
=0.90−0.01[log500−log27]
\sf\implies\:E_{cell}=0.90-0.01[2.69-1.43]⟹E
cell
=0.90−0.01[2.69−1.43]
\sf\implies\:E_{cell}=0.90-0.01[1.26]⟹E
cell
=0.90−0.01[1.26]
\sf\implies\:E_{cell}=0.90-0.0126⟹E
cell
=0.90−0.0126
\sf\implies\:E_{cell}=0.887V⟹E
cell
=0.887V
Therefore,the potential of the given cell is 0.887 V
Explanation: