Physics, asked by Anonymous, 5 months ago

calculate the cell potential for following cell : Al | Al³+ (0.25M) || Zn²+(0.15M) | Zn
E°cell : Al³+ = -1.66v , E°cell : Zn²+ = -0.76v​

Answers

Answered by Anonymous
7

Given :

Reaction :

\sf\:Al\:|Al^{+3}(0.25M)\:||\:Zn^{+2}(0.15M)|ZnAl∣Al

and

\sf\:\:E\degree\:Zn^{+2}|Zn=-0.76VE°

\sf\:\:E\degree\:Al^{+3}|Al=-1.66VE°

To Find

Calculate the potential of the given cell reaction

Theory :

•Nernst Equation :

\sf\:E_{cell}=E\:\degree_{cell}+\dfrac{-2.303RT}{nF}\log\dfrac{[Prduct]}{[Reactant]}

or

\sf\:E_{cell}=E\degree_{cell}-\dfrac{0.059}{n}\log\:

\sf\:E\degree_{cell}=E\degree_{cathode}-E\degree_{anode}E°

Solution :

We have , Reaction

\sf\:Al\:|Al^{+3}(0.25M)\:||\:Zn^{+2}(0.15M)|ZnAIlAl

We know that

\bf\:E\degree_{cell}=E\degree_{cathode}-E\degree_{anode}E°

\sf\:E\degree_{cell}=-0.76-(-1.66)E°</p><p></p><p>[tex]\sf\:E\degree_{cell}=(-0.76+1.66)VE°

\sf\:E\degree_{cell}=0.90VE°

At Anode :

\sf\:Al\:\longrightarrow\:Al^{+3}+3e^{-13}

At Cathode :

\sf\:Zn^{+2}+2e^{-1}\longrightarrow\:

Now ,

Multiply Equation (1) by 2 and Equation (2) by 3

Then ,

Over-all reaction :

\sf\:2Al+3Zn^{+2}\longrightarrow\:

Thus , n= 6

Then ,

\sf\:Q=\dfrac{[Prduct]}{[Reactant]}

\sf\:Q=\dfrac{[Al^{+3}]^2}{[Zn^{+2}]^3}

Given

\sf\:[Zn^{+2}]=0.15M\:and\:[Al^{+3}

\sf\implies\:Q=\dfrac{(0.25)^2}{(0.15)^3}

\sf\implies\:Q=\dfrac{500}{27}

By Nernst Equation :

\sf\:E_{cell}=E\degree_{cell}-\dfrac{0.059}{n}

\sf\implies\:E_{cell}=0.90-\dfrac{0.059}{6}\log\:(\dfrac{500}{27}

Therefore,the potential of the given cell is 0.887 V9

Similar questions