Physics, asked by mimipabaj, 9 months ago

Calculate the Centroid of the triangle whose vertices are x(5,1),y( 7,1) and z(3,3).​

Answers

Answered by PranavMNSSVM
2

Answer:

ANSWER

given points A(4,3),B(3,4),C(2,2)

Circumcenter is given as (

3

4+3+2

,

2

3+4+2

)

(

3

9

,

3

9

)=(3,3)

Answered by Anonymous
5

\large{\red{\bold{\underline{Given:}}}}

\sf \: Coordinates \: of \: the \: vertices \: are: \:  x(5,1), \: y(7,1) \: and \: z(3,3)

\large{\green{\bold{\underline{To \: Find:}}}}

 \sf \: Centroid \: of \: the \: triangle

\large{\blue{\bold{\underline{Formula \: Used:}}}} \\  \\ \sf \:Coordinates \: of \:Centroid =   \: (\frac{x_{1} + x_{2} + x_{3}}{3} ),( \frac{y_{1} + y_{2} + y_{3}}{3})

\large{\red{\bold{\underline{Solution:}}}} \\  \\  \: \sf \: On \: considering \: the \: respective \: coordinates \: as :

 \sf \: x(5,1) \: \rightarrow \: (x_{1}, y_{1}) \\ \\\sf \: y(7,1) \: \rightarrow \: (x_{2}, y_{2})  \\  \\  \sf \: z(3,3) \: \rightarrow \: (x_{3}, y_{3})

\large{\pink{\bold{\underline{Now:}}}} \\ \\ \rightarrow \: \sf \: Centroid = ( \frac{5 + 7 + 3}{3}) ,( \frac{1 + 1 + 3}{3} ) \\ \\  \rightarrow \sf \: Centroid = ( \frac{\cancel15}{\cancel3}) , (\frac{5 }{3} ) \\  \\ \rightarrow \sf \: Centroid = ( \frac{5}{1} ),( \frac{5}{3} ) \\  \\ \rightarrow \sf \: Centroid = (5,1.6)

\large{\orange{\bold{\underline{Therefore:}}}} \\  \\  \sf \: The \: coordinates \: of \: Centroid \: of \: the \: triangle \\ \sf \: is \: (5,1.6).

Similar questions