Physics, asked by sanaarshad272, 7 months ago

Calculate the change in momentum of a body waiting 5 kg when its velocity decreases from 20 metre per second to 0.20 metre per second?

Answers

Answered by prince5132
26

GIVEN :-

  • Mass , m = 5 kg.
  • Initial velocity , u = 20 m/s.
  • Final velocity , v = 0.20 m/s.

TO FIND :-

  • Change in momentum.

SOLUTION :-

 \\  : \implies \displaystyle \sf \: Change \:  in \:  momentum \ (\Delta p) = mv - mu \\  \\

  \\  : \implies \displaystyle \sf \:  Change \:  in \:  momentum \ (\Delta p) = m(v - u) \ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigg \lgroup common\bigg \rgroup\  \\  \\

 \\ : \implies \displaystyle \sf \:  Change \:  in \:  momentum \ (\Delta p) = 5(0.20 - 20) \\  \\

 \\ : \implies \displaystyle \sf \:  Change \:  in \:  momentum \ (\Delta p) = 1 - 100 \\  \\

 \\ : \implies  \underline{ \boxed{\displaystyle \sf \:  Change \:  in \:  momentum \ (\Delta p) =  - 99 \: kg \: ms^{ - 1} }} \\  \\

\therefore \underline {\displaystyle \sf change  \: in \:  momentum  \: of \:  a \:  body \:  is  \: -99 kg  \: m/s.}

Answered by Anonymous
24

Given:

  • Mass, m = 5kg
  • Initial Velocity, u = 20m/s
  • Final Velocity, v = 0.20m/s

Find:

Change In Momentum

Solution:

we, know that

\underline{\boxed{\pink{\sf \triangle p = m(v - u) }}}

where,

  • m = 5kg
  • v = 0.20m/s
  • u = 20m/s

So,

\sf \to \triangle p = m(v - u)

\sf\to \triangle p = 5(0.20 - 20)

\sf\to \triangle p = 5( - 19.8)

\underline{\boxed{\blue{\sf\to \triangle p = - 99kg \: m/s }}}

Hence, change in momentum will be -99kg m/s

The - ve sign indicates that there is a decrease in the momentum of the object.

Similar questions