Physics, asked by TanveeDewangan2016, 1 year ago

Calculate the charge on an alpha particle .given charge on a proton is equal to 1.6 x10 ^ -19 C

Answers

Answered by NoBrainer
92
Hope this helps comment if you want further explanation
Attachments:
Answered by skyfall63
12

The charge of an alpha particle is \bold{2.032 \times 10^{-13} \ \mathrm{m}}

Given:

Charge on proton =1.6 \times 10^{-19} \ C

Solution:

We know that,

1 \ \mathrm{KeV}=1000 \ \mathrm{eV}

1 \ e V=1.6 \times 10^{-19} \ \mathrm{J}

The particle's Kinetic energy which is given here is,

1.6 \times 10^{-19} \times 10^{4} \ J=1.6 \times 10^{-15} \ J

Kinetic energy is,

K E=\frac{1}{2} m v^{2}

\text{Alpha particle's mass} =4 \times 1.67 \times 10^{-27} \ k g=6.68 \times 10^{-27} \ k g

\Rightarrow K E=\frac{1}{2} m v^{2}

\Rightarrow 1.6 \times 10^{-15}=6.68 \times 10^{-27} \times v^{2}

\Rightarrow v^{2}=\frac{1.6 \times 10^{-15}}{6.68 \times 10^{-27}}

\Rightarrow v^{2}=2.39 \times 10^{11}

v=4.88 \times 10^{5} \ m s^{-1}

The Plank's constant, h=6.626 \times 10^{-34} \ m^2.kg/s

According to de-Broglie equation,

\Rightarrow \lambda=\frac{h}{m v}

Here, h is defined as plank's constant.

\Rightarrow \frac{6.626 \times 10^{-34}}{6.68 \times 10^{-27} \times 4.88 \times 10^{5}}

\Rightarrow \lambda=2.032 \times 10^{-13} \mathrm{m}

Similar questions