Math, asked by AashishP, 5 months ago

calculate the compound interest on ₹12000 for 2 years at 20% per annum when compounded half yearly.​

Answers

Answered by thebrainlykapil
90

\large\underline{ \underline{ \sf \maltese{ \: Question:- }}}

  • Calculate the compound interest on ₹12000 for 2 years at 20% per annum when compounded half yearly.

\large\underline{ \underline{ \sf \maltese{ \:Given:- }}}

  • Principal (p)= \sf\green{Rs.12000}
  • Rate (r)= \sf\green{ 20\%}
  • Time (n) = \sf\green{2 years}

━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{ \underline{ \sf \maltese{ \: Solution:- }}}

Amount after 2 years =

\begin{gathered}\begin{gathered}: \implies \underline{ \boxed{\displaystyle \sf \bold{\:\qquad \bull \: { \sf{Amount \:  }= \bf P \bigg(1 + \dfrac{R}{200}\bigg)}^{2n} }} }\\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\underline{\boldsymbol{According\:\: to \:\:the\:\: Formula:}} \\\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow  { \sf{Amount \:  }= \bf 12000 \bigg(1 + \dfrac{2 \cancel0 }{20 \cancel0 }\bigg)}^{2 \times 2}

\qquad \quad {:} \longrightarrow  { \sf{Amount \:  }= \bf 12000 \bigg(1 + \dfrac{1 }{10}\bigg)}^{4}

\qquad \quad {:} \longrightarrow  { \sf{Amount \:  }= \bf 12000 \bigg(\dfrac{11 }{10}\bigg)}^{4}

amount \:  =  \:  \frac{11}{10}   \times  \frac{11}{10}  \times  \frac{11}{10} \times   \frac{11}{10}

\qquad \quad {:} \longrightarrow  { \sf{Amount \:  }= \bf 12 \cancel0 \cancel0  \cancel0 \:  \:  \: \:  \times  \:  \frac{14641}{10 \cancel0 \cancel0  \cancel0} }

\qquad\quad {:} \longrightarrow \underline {\boxed{\sf{Amount = ₹17569.20 }}}

━━━━━━━━━━━━━━━━━━━━━━━━━

\boxed{ \sf \red{ CI\: = \: Amount\:- \: Principal  }}

\qquad \quad {:} \longrightarrow  \: 17569.20 \:  -  \: 12000

\begin{gathered}\qquad \therefore\: \sf{ Compound \: Interest= \underline {\underline{₹5569.20 }}}\\\end{gathered}

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions