Calculate the coordinates of R which divides the line joining A (– 3, 3) and B (2, – 7) internally in the ratio 2 : 3.
Answers
Answered by
2
Answer:
Step-by-step explanation:
A = (-3,3) = (,)
B = (2,-7) = (,)
R = (x,y)
= 2
= 3
x = + /+
= 2*2 + 3*-3/2+3
= -1
y = + /+
= 2*-7 + 3*3/2+3
= -1
R = (-1,-1)
Answered by
0
Solution :
*************************************
Section Formula :
The coordinates of the point R(x,y)
which divides the line segment
joining the points A(x1,y1) , B(x2,y2)
internally in the ratio m1 : m2 are
x = ( m1x2 + m2x1 )/( m1 + m2 ) ,
y = ( m1y2 + m2y1 )/( m1 + m2 )
*******************************************
Here ,
A( x1 , y1 ) = ( -3 , 3 ),
B( x2 , y2 ) = ( 2 , -7 ),
m1 : m2 = 2 : 3
Let R = ( x , y ) ,
x = [ 2×2+3(-3) ]/( 2 + 3 )
= ( 4 - 9 )/5
= -5/5
= -1
y = [ 2×(-7)+3(3) ]/( 2 + 3 )
= ( -14 + 9 )/5
= -5/5
= -1
Therefore ,
R( x , y ) = ( -1 , -1 )
••••
*************************************
Section Formula :
The coordinates of the point R(x,y)
which divides the line segment
joining the points A(x1,y1) , B(x2,y2)
internally in the ratio m1 : m2 are
x = ( m1x2 + m2x1 )/( m1 + m2 ) ,
y = ( m1y2 + m2y1 )/( m1 + m2 )
*******************************************
Here ,
A( x1 , y1 ) = ( -3 , 3 ),
B( x2 , y2 ) = ( 2 , -7 ),
m1 : m2 = 2 : 3
Let R = ( x , y ) ,
x = [ 2×2+3(-3) ]/( 2 + 3 )
= ( 4 - 9 )/5
= -5/5
= -1
y = [ 2×(-7)+3(3) ]/( 2 + 3 )
= ( -14 + 9 )/5
= -5/5
= -1
Therefore ,
R( x , y ) = ( -1 , -1 )
••••
Similar questions