Physics, asked by adityathakur007, 11 months ago

calculate the Coulomb's force between alpha particle
and electron placed at a distance
9.68 10-15m in vacuum?

Answers

Answered by Anonymous
10

\huge\underline{\underline{\bf \orange{Question-}}}

Falculate the Coulomb's force between alpha particle and electron placed at a distance {\sf 9.68×10^{-15}}m in vacuum?

\huge\underline{\underline{\bf \orange{Solution-}}}

\sf{Given}\begin{cases}{\sf Charge\:on\:\alpha \: particle=+2}\\{\sf Charge\:on\:e^-=1.6×10^{-19}C}\\{\sf Distance\: Between\:2\: charge=9.68×10^{-15}m}\end{cases}

\sf{To\:Find}\begin{cases}{\sf Coulomb's\:Force}\end{cases}

Coulomb's Law

\large{\boxed{\bf \blue{F=\dfrac{1}{4π\epsilon_o}×\dfrac{q_1q_2}{r^2}} }}

\implies{\sf \pink{\dfrac{1}{4π\epsilon_o}=9×10^9}}

\implies{\sf F=9×10^9×\dfrac{2×1.6×10^{-19}}{(9.68×10^{-15})} }

\implies{\sf F =\dfrac{28.8×10^{-10}}{93.7×10^{-30}} }

\implies{\sf F=0.3×10^{20} }

\implies{\bf \red{F=3×10^{19}N} }

\huge\underline{\underline{\bf \orange{Answer-}}}

Coulomb's force is {\bf \red{3×10^{19}N}}.

Answered by Anonymous
17

 \mathtt{ \huge{ \fbox{Solution :)}}}

Given ,

  • The magnitude of alpha particle is 2 × (1.6 × 10^(-19)) C
  • The magnitude of electron is 1.6 × 10^(-19) C
  • The distance between alpha particle and electron is 9.68 × (10)^-15

We know that , the electrostatic force between two charges is given by coulombs law i.e

 \large \mathtt{ \fbox{Electrostatic  \: force =k \frac{ q_{1}q_{2} }{ {(r)}^{2} } }}

Where , K = coulombs constant which is equal to 9 × (10)^9 Nm²/C²

Therefore ,

 \sf \mapsto F= \frac{9 \times  {(10)}^{9} \times 2 \times (1.6) \times  {(10)}^{ - 19}  \times1.6 \times   {(10)}^{ - 19}  }{9.68 \times  {(10)}^{ - 15} }  \\  \\ \sf \mapsto F =  \frac{9 \times 2 \times 16 \times 16 \times  {(10)}^{(9 - 19 - 19 + 2)} }{968 \times  {(10)}^{( - 15 + 2)} } \\  \\ \sf \mapsto  F = \frac{18 \times 256 \times  {(10)}^{ (- 27)}}{968 \times  {(10)}^{ (- 13)} }  \\  \\\sf \mapsto   F =  \frac{4608 \times  {(10)}^{ (- 27 + 13)} }{968}  \\  \\\sf \mapsto  F   = 4.760 \times  {(10)}^{ - 14}  \:  \: newton

Hence , the electrostatic force is 4.760 × (10)^(-14) newton

______________ Keep Smiling ☺

Similar questions