Physics, asked by abhinava2486, 4 months ago

Calculate the critical current for a lead wire of 0.5mm radius at 4.2k . Given for lead Tc = 7.18K, Ho=6.5 x 104A/m.

Answers

Answered by BrainlyWizzard
7

\bigstar\;\underline{\boxed{ \frak{\pmb{ \: Given: -  \: }}}}

 \:  \:  \:  \:  \:  •\sf \: Critical \:  temperature (T_{c}) = 7.18 \: k

 \:  \:  \:  \:  \:  \:   \sf• \: Critical  \: field \: (H _{o}) = 6.5×10^4 A/m

 \:  \:  \:  \:  \:  \:  \sf• \: Temperature \: (T)= 4.2k

 \:  \:  \:  \:  \:  \: \sf• \: Radius  \: of  \: the  \: wire  \: (r) = 0.5mm

\bigstar\;\underline{\boxed{ \frak{\pmb{Calculation: -  \: }}}}

\sf \: The \:  critical  \: manage \:  field \: H_{c}= H_{o} \: [1-[ \dfrac{T {}^{2} }{T {}^{2}_{c}}]

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf= 6.5 \times {10}^{4} \:[1 -  [\dfrac{4.2}{7.18} ] {}^{2} ]

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf= 4.276 \times {10}^{4}  \: Am

 \sf(i) \: Critical \:  field \: (I_{c})= 2πr \: H_{c}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf= 2×3.14×0.5×4.2

 \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = {\underline{\underline{{\sf13.188 \: A}}}}

 \sf(ii)  \: Critical  \: density \:  (j_{c} ) =  \dfrac{I_{c} }{πr^2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \sf=  \dfrac{13.188}{3.14 \: (0.5^2)}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = \sf  {\underline{\underline{ 1.05 \: Am}}}

Finally :

  \:  \:  \:  \:  \:  \: \therefore \underline{ \sf \: Critical  \: field = 13.188 \: A}

 \:  \:   \therefore \underline{ \sf \: Critical \:  density = 1.05 \: Am }

Similar questions