Chemistry, asked by PRATAPLOKHANDE917280, 1 year ago

CALCULATE THE DE BROGLEIS WAVELENGTH OF THE TENNIS BALL OF MASS 600 G MOVING WITH A VELOCITY OF 10 M/S

Answers

Answered by clara66
4

Explanation:

The de Broglie wavelength is the wavelength, λ, associated with a particle and is related to its momentum, p, through the Planck constant, h.

λ = h/p = h/mv

h = 6.63 × 10–34 Js

m = 60 g = 0.06 kg = 6 x 10-2 kg

v = 10 m/s

λ = h/mv = (6.63 x 10-34)/(10 x 6 x 10-2)

λ ≅ 10-33 m

Answered by Anonymous
3

Answer:-

  \implies \:    \boxed{\bf{\lambda \:  =  {10}^{</em><em>-</em><em>34}  \: or \: 10 \times  {10}^{</em><em>-</em><em>3</em><em>5</em><em>} }}

Step - by - step explanation:-

To find :-

Find De Broglei's wavelength.

Given :-

Mass(m) = 600 g = 600÷ 1000 kg

Velocity (v)= 10 m/s

Solution :-

We know that,

 \bf{  \lambda \:   =  \frac{h}{p}}

here \:  \\   \bf{\lambda \:  = de \: broglei '\: s \: wavelength \:  }\\  \\ \bf{ h \:  =  \: plank 's\: constant }\\   \bf{\because \: h \:  = 6.6 \times  {10}^{-34} } \\  \\ \bf{ p \:  =  \: momentum = mass \:  \times velocity} \\  \\  \therefore \:   \bf{\lambda \:  =  \frac{6.6 \times  {10}^{-34} }{ \frac{600}{1000}  \times 10} } \\  \\  \implies  \:  \bf{ \lambda \:  = 1.1 \times  {10}^{-34} } \\  \\  \implies \:  \bf{ \lambda \:  = 11 \times  {10}^{-35} }

By round off rule -

 \implies  \:  \bf{\lambda \:   \cong \: 10 \times  {10}^{</em><em>-</em><em>3</em><em>5</em><em>}  \:  =  {10}^{</em><em>-</em><em>3</em><em>4</em><em>} }

Similar questions