Chemistry, asked by syedhussainfareed7, 1 month ago

Calculate the de-Broglie wavelength of an electron that has been accelerated from rest through a potential difference of 1 keV.

i need the correct and exact answer....​

Answers

Answered by itsPapaKaHelicopter
2

To Find Given:

Calculate the de-Broglie wavelength of an electron that has been accelerated from rest through a potential difference of 1kV.

Solution:

 \textbf{From the equation: } \:  \frac{1}{2 {}^{} }   {mv}^{2}  = eV

e = \text{charge on electron }  = 1.6 \times  {10}^{ - 19 \: } \text{Coulombs}

⇒V = 1000v

 \textbf{mass of electron  = } m = 9.1 \times  {10}^{ - 31}  kg

we get,

⇒1/2 \times 9.1 \times  {10}^{ - 31}  \times  {v}^{2}  = 1.6 \times  {10}^{ - 19}  \times 1000

⇒ {v}^{2}  =  \frac{2 \times 1.6x {10}^{ - 19}  \times 1000}{9.1x {10}^{ - 31} }

 =  \frac{3.2 \times  {10}^{ - 19}  \times 1000}{9.1x {10}^{ - 31} }  = 3.5 \times  {10}^{4}

⇒v =  \sqrt{3.5 \times  {10}^{4} } = 1.88 \times  {10}^{7}   \: m/s

\text{de-Broglie wavelength of an electron}

 = λ =  \frac{h}{mv}

⇒λ =  \frac{6.67 \times  {10}^{ - 34} }{9.1 \times  {10}^{ - 31} \times 1.88 \times  {10}^{7}  }  = 3.87 \times  {10}^{ - 11} m

 \\  \\  \\  \\ \sf \colorbox{lightgreen} {\red★ANSWER ᵇʸɴᴀᴡᴀʙ \: khan}

Similar questions