Chemistry, asked by nibha960, 1 year ago

Calculate the de-broglie wavelength of the electron orbiting in the n=2 state of hydrogen atom

Answers

Answered by VemugantiRahul
17
Hi there !
Here's the answer:

•°•°•°•°•°<><><<><>><><>°•°•°•°•°•°

¶¶¶ POINTS TO REMEMBER

¶¶ The Energy of an Electron in Bohr's orbit of Hydrogen atom
 E_{n} = -\frac{2 \pi^{2} me^{4}Z^{2}}{n^{2}h^{2}(4 \pi \epsilon_{0})^{2}}

E_{n} = - 13.6 \frac{Z^{2}}{n^{2}}\: eV

where, n = Shell Number

• For Hydrogen Atom , Z = 1

\implies E_{n} = \frac{13.6}{n^{2}}\: eV

¶¶ Debroglie Wavelength
\lambda = \frac{h}{\sqrt{2mE_{n}}}

where, h = planck constant = 6.63×10^{-34}\: J-s
m = mass of electron = 9.1× 10^{-31}\: kg

¶¶  1\: eV = 1.6 × 10^{-19}\: J

¶¶ 1\: {\AA} = 1 \times 10^{-10}\: m

•°•°•°•°•°<><><<><>><><>°•°•°•°•°•°

¶¶¶ SOLUTION:

Given,
Shell Number, n = 2

substitute in E_{n}

Energy ,E_{n} = \frac{13.6}{4}\: eV

\implies E_{n} = 3.4\: eV

\implies E_{n} = 3.4×10^{-19}\: J

Substitute m, h, E_{n} in debroglie wavelength formula

\implies \lambda = \frac{6.63×10^{-34}}{\sqrt{2×9.1×10^{-31}×3.4×1.6×10^{-19}}}

\implies \lambda = 6.663× 10^{-10}\: m

\implies \lambda = 6.663\: {\AA}

•°•°•°•°•°<><><<><>><><>°•°•°•°•°•°
...
Similar questions