Math, asked by bhavanamaewal, 4 months ago

Calculate the difference between compound interest and simple interest on a

sum of Rs. 500000 at 8% p.a. for 2 years.​

Answers

Answered by wonderfulbishnu
0

Step-by-step explanation:

The answer is 3,200.

MARK ME AS BRAINLIEST BECAUSE I GAVE THE RIGHT ANSWER..SEE IT..

Attachments:
Answered by itzBrainlystarShivam
7

\Huge\boxed {r.s=3200}

\Large{\textsf{\textbf{\underline{\underline{Given\::}}}}} \\

p = rs.500000

r = 8\%p.a.

t = 2 \: years.

\Large{\textsf{\textbf{\underline{\underline{To.find\::}}}}} \\

●diffrence \: between  \\ \: ci \: and \: si

\Large{\textsf{\textbf{\underline{\underline{formulas.used\::}}}}} \\

si =  \frac{prt}{100}

A = p \:   (1 +  \frac{r}{100} )t

c.i = a-p

\Large{\textsf{\textbf{\underline{\underline{solusion\::}}}}} \\

{\bf{1.case\::}} \\

➣to \: find \: s.i.

➣we \: know, \:

➣s.i. =  \frac{p \times r \times t}{100}

➣s.i. =  \frac{500000 \times  8 \times 2}{100}

\small{\textsf{\textbf{\underline{\underline{ ➣s.i = 80000\::}}}}} \\

{\bf{2.case\::}} \\

➣to \: find \: ci,

➣we \: know, \:

➣A = p(1 +  \frac{r}{100} )t

➣a = 500000(1 +  \frac{8}{100} ) {}^{2}

➣a = 500000(100 +  \frac{8}{100} ) {}^{2}

➣a = 500000( \frac{108}{100} ) {}^{2}

➣a = 500000  \times  \frac{108}{100} \times  \frac{108}{100}

\small{\textsf{\textbf{\underline{\underline{➣A = 583200\::}}}}} \\

{\bf{3.case\::}} \\

➣to.find.c.i

➣we.know. c.i = A - p

➣c.i = 583200 - 500000

\small{\textsf{\textbf{\underline{\underline{➣c.i = 83200\::}}}}} \\

\small{\textsf{\textbf{\underline{\underline{now.finding.the.diffrence.between.ci.and.si\::}}}}} \\

➣c.i = 83200

➣s.i = 80000

➣difference = r.s  (83200 - 80000)

\Large{\textsf{\textbf{\underline{\underline{➣r.s = 3200\::}}}}} \\

\Large{\textsf{\textbf{\underline{\underline{form.the.soluaion\::}}}}} \\

●p = principal \\ ●r = rate \: of \: interest \\ ●t = time \\ ●si = simple \: interest \\ ●ci  = compound \: interest \\ ●a = amount

Similar questions