Physics, asked by Anonymous, 1 year ago

calculate the dimensions of force and impulse taking velocity, density and frequency as basic quantities.

Answers

Answered by lidaralbany
51

Answer:

The dimension of force and impulse is F= k v^{4}\rho^{1}f^{-2} and I= k v^{4}\rho^{1}f^{-3}.

Explanation:

We know that,

Let the force is directly proportional to velocity, frequency and density.

F\propto v^{x}

F\propto f^{y}

F\propto \rho^{y}

F=k v^{x}\rho^{y}f^{z}

The dimension formula of force,velocity, frequency and density.

F=[MLT^{-2}]

v=[LT^{-1}]

\rho=[ML^{-3}]

f=[T^{-1}]

[MLT^{2}]= [LT^{-1}]^{x}[ML^{-3}]^{y}[T^{-1}]^{z}

[MLT^{2}]=[M^{y}L^{x-3y}T^{-x-z}]

M^{1}=M^{y}

y= 1

L^{1}=L^{x-3y}

x-3y=1

x= 4

T^{-2}=T^{-x-z}

z=-2

Now, The dimension of force will be

F= kv^{4}\rho^{1}f^{-2}

The dimension formula of impulse

I=[MLT^{-1}]

[MLT^{-1}]= [LT^{-1}]^{x}[ML^{-3}]^{y}[T^{-1}]^{z}

[MLT^{-1}]=[M^{y}L^{x-3y}T^{-x-z}]

M^{1}=M^{y}

y= 1

L^{1}=L^{x-3y}

x-3y=1

x= 4

T^{-1}=T^{-x-z}

z=-3

Now, The dimension of impulse will be

F= kv^{4}\rho^{1}f^{-3}

Hence, The dimension of force and impulse is F= k v^{4}\rho^{1}f^{-2} and I= k v^{4}\rho^{1}f^{-3}.

Answered by tanisha365
0

Explanation:

kv4ρ1f−2 and I= k v^{4}\rho^{1}f^{-3}I=kv4ρ1f−3 .

Similar questions