Physics, asked by subhashmahadik196, 8 months ago

Calculate the distance between proton and electron in air if the attract each other with a force of 6*10^-11 Newton plz answer fast

Answers

Answered by Anonymous
23

Answer:

 \boxed{\mathfrak{Distance \ between \ proton \ and \ electron = 2 \ nm}}

Given:

Force of attraction (F) between proton & electron =  \sf 6 \times 10^{-11} N

To Find:

Distance (r) between proton & electron

We know:

Magnitude of charge on proton ( \sf q_p ) =  \sf 1.6 \times 10^{-19} C

Magnitude of charge on electron ( \sf q_e ) =  \sf 1.6 \times 10^{-19} C

 \sf k = \dfrac{1}{4\pi \epsilon_0} = 9 \times 10^9 \ Nm^2/C^2

Explanation:

From Coulomb's inverse square law:

 \boxed{ \bold{F = \dfrac{kq_p q_e}{r^2}}}

By substituting value of F, k,  \sf q_p &  \sf q_p in the equation we get:

 \sf \implies 6 \times  {10}^{ - 11}  =  \dfrac{9  \times  {10}^{9}  \times 1.6 \times  {10}^{ - 19}  \times 1.6 \times  {10}^{ - 19} }{ {r}^{2} }  \\  \\  \sf \implies 6 \times  {10}^{ - 11}  =  \dfrac{9 \times  {10}^{9} \times  {(1.6 \times  {10}^{ - 19}) }^{2}  } { {r}^{2} }  \\  \\  \sf \implies 6 \times  {10}^{ - 11}  =  \dfrac{9 \times  {10}^{9}  \times 2.56 \times  {10}^{ - 38} }{ {r}^{2} }  \\  \\  \sf \implies 6 \times  {10}^{ - 11}  =  \dfrac{23.04 \times  {10}^{ - 38 + 9} }{ {r}^{2} }  \\  \\  \sf \implies 6 \times  {10}^{ - 11}  =  \dfrac{23.04 \times  {10}^{ - 29} }{ {r}^{2} } \\  \\  \sf \implies {r}^{2}  =  \dfrac{23.04 \times  {10}^{ - 29} }{6 \times  {10}^{ - 11} }  \\  \\   \sf \implies {r}^{2}  =  3.84 \times  {10}^{ - 29 - ( - 11)}   \\  \\   \sf \implies {r}^{2}  =  3.84 \times  {10}^{ - 29  +  11}   \\  \\   \sf \implies {r}^{2}  =  3.84 \times  {10}^{ - 18} \\  \\   \sf \implies r =  \sqrt{3.84 \times  {10}^{ - 18}} \\  \\   \sf \implies r  \approx 2 \times  {10}^{ - 9}  \: m\\  \\   \sf \implies r  \approx 2 \:  nm

 \therefore

Distance (r) between proton & electron = 2 nm

Answered by alex875
11

Answer:

F = 6 × 10^-11 N

q = 1.6 × 10^-19 C

k = 9 × 10^9 Nm²/C²

F = kq²/r²

By substituting value we get:

r = 2 × 10^-9 m

Similar questions