Science, asked by ramsayyad4, 8 months ago

calculate the energy of photon corresponding to ultraviolet light and red light, give that their wavelengths are 3000A° and 7000A° respectively ​

Answers

Answered by Mysterioushine
8

Given :

  • Wavelength of ultraviolet light = 3000 A⁰
  • Wavelength of red light = 7000 A⁰

To find :

  • The energy of photon corresponding to ultraviolet light and red light.

Solution :

The relation between wavelength and Energy is given by ,

 \boxed {\rm{E =  \frac{hc}{ \lambda} }}

Where ,

  • λ is wavelength
  • h is planck's constant ( = 6.625 × 10⁻³⁴ J.S)
  • c is velocity of light ( = 3 × 10⁸ m/s)

The relation between Angstroms and metres is given by ,

 \boxed {\rm{1A {}^{0} =  {10}^{ - 10}   \: m}}

 :  \implies \rm \lambda = 3000 \times  {10}^{ - 10}  \: m \\  \\   : \implies \rm \lambda = 3 \times  {10}^{ - 7}  \: m

We have ,

  • λ = 3 × 10⁻⁷ m
  • c = 3 × 10⁸ m/s
  • h = 6.625 × 10⁻³⁴ J.s

Energy asscociated with the ultraviolet light is ,

 :  \implies \rm \: E =  \frac{(6.625 \times  {10}^{ - 34}J.s)(3 \times  {10}^{8}  \: m {s}^{ - 1})  }{(3 \times  {10}^{ - 7} \: m ) }  \\  \\ :   \implies \rm \: E =  \frac{(6.625 \times 10 {}^{ - 34}  \: J \: \cancel{s}) \times (3 \times  {10}^{8} \cancel{m {s}^{ - 1} })   }{(3 \times  {10}^{ - 7} \cancel{m}) }  \\  \\   : \implies \rm \: E =  \frac{6.625 \times  {10}^{ - 34} J \times 3 \times 10 {}^{8}  \times  {10}^{7} }{3}  \\  \\  :  \implies \rm \: E=  \frac{19.875  \times 10 {}^{ - 34} \times  {10}^{15}  \: J}{3}  \\  \\   : \implies \rm \: E =  6.625 \times  {10}^{ - 19}  \: J

Hence , The Energy associated with the ultraviolet light is 6.625 × 10¹ J

Now , wavelength of red light is

 :   \implies \rm \lambda = 7000 \times  {10}^{ - 10}  \: m \\  \\  :  \implies \rm \lambda = 7 \times  {10}^{ - 7}  \: m

The Energy associated with the red light is ,

 :  \implies \rm \: E =  \frac{(6.625 \times  {10}^{ - 34}J.s)(3 \times  {10}^{8}  \: m {s}^{ - 1})  }{(7 \times  {10}^{ - 7} \: m ) }  \\  \\ :   \implies \rm \: E =  \frac{(6.625 \times 10 {}^{ - 34}  \: J \: \cancel{s}) \times (3 \times  {10}^{8} \cancel{m {s}^{ - 1} })   }{(7 \times  {10}^{ - 7} \cancel{m}) }  \\  \\   : \implies \rm \: E =  \frac{6.625 \times  {10}^{ - 34} J \times 3 \times 10 {}^{8}  \times  {10}^{7} }{7}  \\  \\  :  \implies \rm \: E =  \frac{19.875  \times 10 {}^{ - 34} \times  {10}^{15}  \: J}{7}  \\  \\   : \implies \rm \: E =  2.83\times  {10}^{ - 19}  \: J

Hence , The Energy associated with the red light is 2.83 × 10¹ J .

Answered by abdulrubfaheemi
0

Answer:

Given :

Wavelength of ultraviolet light = 3000 A⁰

Wavelength of red light = 7000 A⁰

To find :

The energy of photon corresponding to ultraviolet light and red light.

Solution :

The relation between wavelength and Energy is given by ,

\boxed {\rm{E = \frac{hc}{ \lambda} }}

E=

λ

hc

Where ,

λ is wavelength

h is planck's constant ( = 6.625 × 10⁻³⁴ J.S)

c is velocity of light ( = 3 × 10⁸ m/s)

The relation between Angstroms and metres is given by ,

\boxed {\rm{1A {}^{0} = {10}^{ - 10} \: m}}

1A

0

=10

−10

m

\begin{gathered} : \implies \rm \lambda = 3000 \times {10}^{ - 10} \: m \\ \\ : \implies \rm \lambda = 3 \times {10}^{ - 7} \: m\end{gathered}

:⟹λ=3000×10

−10

m

:⟹λ=3×10

−7

m

We have ,

λ = 3 × 10⁻⁷ m

c = 3 × 10⁸ m/s

h = 6.625 × 10⁻³⁴ J.s

Energy asscociated with the ultraviolet light is ,

\begin{gathered} : \implies \rm \: E = \frac{(6.625 \times {10}^{ - 34}J.s)(3 \times {10}^{8} \: m {s}^{ - 1}) }{(3 \times {10}^{ - 7} \: m ) } \\ \\ : \implies \rm \: E = \frac{(6.625 \times 10 {}^{ - 34} \: J \: \cancel{s}) \times (3 \times {10}^{8} \cancel{m {s}^{ - 1} }) }{(3 \times {10}^{ - 7} \cancel{m}) } \\ \\ : \implies \rm \: E = \frac{6.625 \times {10}^{ - 34} J \times 3 \times 10 {}^{8} \times {10}^{7} }{3} \\ \\ : \implies \rm \: E= \frac{19.875 \times 10 {}^{ - 34} \times {10}^{15} \: J}{3} \\ \\ : \implies \rm \: E = 6.625 \times {10}^{ - 19} \: J\end{gathered}

:⟹E=

(3×10

−7

m)

(6.625×10

−34

J.s)(3×10

8

ms

−1

)

:⟹E=

(3×10

−7

m

)

(6.625×10

−34

J

s

)×(3×10

8

ms

−1

)

:⟹E=

3

6.625×10

−34

J×3×10

8

×10

7

:⟹E=

3

19.875×10

−34

×10

15

J

:⟹E=6.625×10

−19

J

Hence , The Energy associated with the ultraviolet light is 6.625 × 10⁻¹⁹ J

Now , wavelength of red light is

\begin{gathered} : \implies \rm \lambda = 7000 \times {10}^{ - 10} \: m \\ \\ : \implies \rm \lambda = 7 \times {10}^{ - 7} \: m\end{gathered}

:⟹λ=7000×10

−10

m

:⟹λ=7×10

−7

m

The Energy associated with the red light is ,

\begin{gathered} : \implies \rm \: E = \frac{(6.625 \times {10}^{ - 34}J.s)(3 \times {10}^{8} \: m {s}^{ - 1}) }{(7 \times {10}^{ - 7} \: m ) } \\ \\ : \implies \rm \: E = \frac{(6.625 \times 10 {}^{ - 34} \: J \: \cancel{s}) \times (3 \times {10}^{8} \cancel{m {s}^{ - 1} }) }{(7 \times {10}^{ - 7} \cancel{m}) } \\ \\ : \implies \rm \: E = \frac{6.625 \times {10}^{ - 34} J \times 3 \times 10 {}^{8} \times {10}^{7} }{7} \\ \\ : \implies \rm \: E = \frac{19.875 \times 10 {}^{ - 34} \times {10}^{15} \: J}{7} \\ \\ : \implies \rm \: E = 2.83\times {10}^{ - 19} \: J\end{gathered}

:⟹E=

(7×10

−7

m)

(6.625×10

−34

J.s)(3×10

8

ms

−1

)

:⟹E=

(7×10

−7

m

)

(6.625×10

−34

J

s

)×(3×10

8

ms

−1

)

:⟹E=

7

6.625×10

−34

J×3×10

8

×10

7

:⟹E=

7

19.875×10

−34

×10

15

J

:⟹E=2.83×10

−19

J

Hence , The Energy associated with the red light is 2.83 × 10⁻¹⁹ J .

Similar questions