calculate the energy of photon corresponding to ultraviolet light and red light, give that their wavelengths are 3000A° and 7000A° respectively
Answers
Given :
- Wavelength of ultraviolet light = 3000 A⁰
- Wavelength of red light = 7000 A⁰
To find :
- The energy of photon corresponding to ultraviolet light and red light.
Solution :
The relation between wavelength and Energy is given by ,
Where ,
- λ is wavelength
- h is planck's constant ( = 6.625 × 10⁻³⁴ J.S)
- c is velocity of light ( = 3 × 10⁸ m/s)
The relation between Angstroms and metres is given by ,
We have ,
- λ = 3 × 10⁻⁷ m
- c = 3 × 10⁸ m/s
- h = 6.625 × 10⁻³⁴ J.s
Energy asscociated with the ultraviolet light is ,
Hence , The Energy associated with the ultraviolet light is 6.625 × 10⁻¹⁹ J
Now , wavelength of red light is
The Energy associated with the red light is ,
Hence , The Energy associated with the red light is 2.83 × 10⁻¹⁹ J .
Answer:
Given :
Wavelength of ultraviolet light = 3000 A⁰
Wavelength of red light = 7000 A⁰
To find :
The energy of photon corresponding to ultraviolet light and red light.
Solution :
The relation between wavelength and Energy is given by ,
\boxed {\rm{E = \frac{hc}{ \lambda} }}
E=
λ
hc
Where ,
λ is wavelength
h is planck's constant ( = 6.625 × 10⁻³⁴ J.S)
c is velocity of light ( = 3 × 10⁸ m/s)
The relation between Angstroms and metres is given by ,
\boxed {\rm{1A {}^{0} = {10}^{ - 10} \: m}}
1A
0
=10
−10
m
\begin{gathered} : \implies \rm \lambda = 3000 \times {10}^{ - 10} \: m \\ \\ : \implies \rm \lambda = 3 \times {10}^{ - 7} \: m\end{gathered}
:⟹λ=3000×10
−10
m
:⟹λ=3×10
−7
m
We have ,
λ = 3 × 10⁻⁷ m
c = 3 × 10⁸ m/s
h = 6.625 × 10⁻³⁴ J.s
Energy asscociated with the ultraviolet light is ,
\begin{gathered} : \implies \rm \: E = \frac{(6.625 \times {10}^{ - 34}J.s)(3 \times {10}^{8} \: m {s}^{ - 1}) }{(3 \times {10}^{ - 7} \: m ) } \\ \\ : \implies \rm \: E = \frac{(6.625 \times 10 {}^{ - 34} \: J \: \cancel{s}) \times (3 \times {10}^{8} \cancel{m {s}^{ - 1} }) }{(3 \times {10}^{ - 7} \cancel{m}) } \\ \\ : \implies \rm \: E = \frac{6.625 \times {10}^{ - 34} J \times 3 \times 10 {}^{8} \times {10}^{7} }{3} \\ \\ : \implies \rm \: E= \frac{19.875 \times 10 {}^{ - 34} \times {10}^{15} \: J}{3} \\ \\ : \implies \rm \: E = 6.625 \times {10}^{ - 19} \: J\end{gathered}
:⟹E=
(3×10
−7
m)
(6.625×10
−34
J.s)(3×10
8
ms
−1
)
:⟹E=
(3×10
−7
m
)
(6.625×10
−34
J
s
)×(3×10
8
ms
−1
)
:⟹E=
3
6.625×10
−34
J×3×10
8
×10
7
:⟹E=
3
19.875×10
−34
×10
15
J
:⟹E=6.625×10
−19
J
Hence , The Energy associated with the ultraviolet light is 6.625 × 10⁻¹⁹ J
Now , wavelength of red light is
\begin{gathered} : \implies \rm \lambda = 7000 \times {10}^{ - 10} \: m \\ \\ : \implies \rm \lambda = 7 \times {10}^{ - 7} \: m\end{gathered}
:⟹λ=7000×10
−10
m
:⟹λ=7×10
−7
m
The Energy associated with the red light is ,
\begin{gathered} : \implies \rm \: E = \frac{(6.625 \times {10}^{ - 34}J.s)(3 \times {10}^{8} \: m {s}^{ - 1}) }{(7 \times {10}^{ - 7} \: m ) } \\ \\ : \implies \rm \: E = \frac{(6.625 \times 10 {}^{ - 34} \: J \: \cancel{s}) \times (3 \times {10}^{8} \cancel{m {s}^{ - 1} }) }{(7 \times {10}^{ - 7} \cancel{m}) } \\ \\ : \implies \rm \: E = \frac{6.625 \times {10}^{ - 34} J \times 3 \times 10 {}^{8} \times {10}^{7} }{7} \\ \\ : \implies \rm \: E = \frac{19.875 \times 10 {}^{ - 34} \times {10}^{15} \: J}{7} \\ \\ : \implies \rm \: E = 2.83\times {10}^{ - 19} \: J\end{gathered}
:⟹E=
(7×10
−7
m)
(6.625×10
−34
J.s)(3×10
8
ms
−1
)
:⟹E=
(7×10
−7
m
)
(6.625×10
−34
J
s
)×(3×10
8
ms
−1
)
:⟹E=
7
6.625×10
−34
J×3×10
8
×10
7
:⟹E=
7
19.875×10
−34
×10
15
J
:⟹E=2.83×10
−19
J
Hence , The Energy associated with the red light is 2.83 × 10⁻¹⁹ J .